Стабилизатор напряжения 12 вольт для автомобиля светодиодов

Содержание:

Блок управления ДХО

Самым надёжным и наиболее простым является вариант подключения ДХО без реле, но с использованием специального блока управления ходовыми огнями. Он обеспечивает включение ДХО после запуска двигателя, гарантирует безопасную работу, защищает от перегрузок и может быть установлен на авто с любым типом ламп, включая светодиодные.

К сожалению, среди всего разнообразия промышленно изготавливаемых блоков ДХО подавляющая часть не соответствует ГОСТу и имеет посредственное качество сборки.

Среди всего многообразия можно отметить всего 2 варианта: российский блок управления ДХО DayLight+ и немецкую продукцию от Philips и Osram. Блок управления DayLight+ разработан русским радиоинженером Исаченковым Фёдором с учетом всех особенностей бортовой сети автомобиля и обладает рядом положительных моментов:

  • имеется встроенная стабилизация напряжения;
  • полное соответствие ГОСТу;
  • максимальная долговременная мощность нагрузки составляет 36 Ватт (для ДХО требуется значительно меньше);
  • простейшая схема подключения.

Помимо вышеописанных моментов блок DayLight+ является универсальным и подходит на все автомобили с бортовой сетью 12 вольт, а также обладает хорошим качеством сборки и высокой степенью защиты от влаги и пыли.

Немецкая продукция от Philips и Osram также обладает всеми вышеописанными преимуществами блока DayLight+, однако поставляются немецкие блоки управления только совместно с фарами дневных ходовых огней и обладают более высокой стоимостью.

Здравствуйте, дорогие друзья! Думаю, многих интересует эффективная схема подключения ДХО, то есть дневных ходовых огней.

Уже не первый год на территории страны действуют правила, согласно которых при движении авто днем следует обозначать свое присутствие с помощью соответствующих фар. В качестве таких светильников используют противотуманки, ближний свет головных фар и непосредственно сами ДХО.

Применение противотуманок и головного света отличается объективными недостатками. Потому оптимальнее всего выполнить подключение ДХО от генератора или АКБ своими руками.

Существуют различные способы и схемы реализации задумки. Некоторые делают это без реле, другие совмещают ДХО с поворотниками, третьи и вовсе управляют дневными огнями отдельной кнопкой и пр. Чтобы сделать все верно, нужно знать некоторые важные моменты. И тогда автоматическое включение будет осуществляться без нарушений ПДД.

Схемы стабилизаторов и регуляторов тока

Существуют как минимум четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто своими руками:

  1. На кренке.
  2. На паре транзисторов.
  3. На операционном усилителе.
  4. На микросхеме импульсного стабилизатора.

Разберем, какие главные особенности имеет каждая из рассматриваемых модификаций.

На кренке

Для сборки своими руками простейшего стабилизатора для светодиодов для авто на 12 вольт потребуются:

  1. Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
  2. Резистор на 120 Ом.
  3. Печатное плато или перфорированная панель.

На изображениях наглядно представлено расположение основных компонентов схемы простейшего стабилизатора для светодиодов в авто:

На второй схеме на входе с АКБ применяется диод выпрямляющего типа 1n4007.

На двух транзисторах

Одним из самых популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт, который также собирается своими руками, на сегодня является схема на двух транзисторах.

Переменное напряжение номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и, проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор параметрического типа VD1 и проходит к резистору R2. Затем с его движка передается на ключ составного транзистора VT1 VT2. Уровень его открытости определяется состоянием движка резистора переменного типа R2 – в нижнем положении регулятора транзисторы перекрыты и напряжение не поступает в нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы полностью открыты, напряжение прилагается к нагрузке.

Интересно! Устройство позволяет задавать параметры электрического тока на выходе в рамках – от 0 до 12 вольт и до 3 ампер. При сборке схемы следует учесть, что выпрямляющий диодный мостик VD1 – VD4 и транзистор VT2 могут значительно перегреваться. Поэтому их следует установить на радиатор с полезной площадью порядка 260-270 см. кв. Кроме того, сами диоды должны выдерживать ток силой не менее 10 ампер (что соответствует Д245-Д247).

Приведенная модель стабилизатора напряжения для авто чаще всего применяется для дневных ходовых огней на базе светодиодов и позволяет успешно подстраивать параметры бортового тока под характеристики прибора освещения.

На операционном усилителе

Стабилизатор напряжения на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда возникает необходимость для его работы в расширенном диапазоне рабочих параметров. Ниже приведенная схема такого устройства. Главная его особенность в том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка 1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%. Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе в двойной амплитуде – меньше 60 мкВ.

Среди главных особенностей его работы выделяются:

  1. Рабочий интервал температуры – от -20 до +60 градусов.
  2. Термический дрейф напряжения на выходе – меньше 0,05%.
  3. Возможность повышения напряжения на выходе до 27-30 вольт.

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Включение через габариты или ближний свет

Второй вариант схемы подключения ДХО предполагает задействовать цепь питания габаритной лампочки. Для этого плюсовой провод от ходовых огней напрямую соединяют с «+» от аккумулятора. В свою очередь, минусовой провод соединяют с «+» габаритного огня, который в данный момент электрически нейтрален. В результате образуется следующий путь протекания тока: от «+» аккумулятора через светодиоды к габариту, а затем через лампочку на корпус, который служит минусом всей цепи. Из-за малого потребления тока (десятки мА) светодиоды начинают светиться, а спираль лампы остаётся погашенной. Если водитель включит габаритные огни, то на плюсе габарита появляется +12 В, потенциалы на проводах ДХО выравниваются и светодиоды гаснут. Схема переходит в штатный режим, то есть ток течёт через лампочки габаритных огней.

В данном схемотехническом решении имеется несколько недостатков:

  • ходовые огни остаются в работе при выключенном двигателе, что противоречит действующим правилам;
  • схема не будет работать, если в габаритах тоже установлены светодиоды;
  • схема не будет корректно работать, если в ДХО размещены мощные SMD светодиоды, номинальный ток которых соизмерим с током лампочки;
  • с целью безопасности необходимо дополнительно устанавливать предохранитель.

Данный способ подключения можно усовершенствовать, соединив плюсовой провод LED-модуля не с «+» аккумулятора, а с «+» замка зажигания, тем самым избавиться от первого недостатка. Некоторые автомобилисты используют схемы включения ходовых огней через лампу ближнего света. То есть при включении ближнего света, ДХО автоматически гаснут, а в остальных случаях работают. Помимо вышеприведенных недостатков, данный способ не соответствует ГОСТу Р 41.48-2004 и ПДД.

Светодиоды вместо галогенок в штатных фарах: полный провал!

Долой галогенки!

Автомобильные светодиоды в начале своей карьеры сами себе испортили репутацию: вторичный рынок был завален откровенным «леваком». Как правило, источник света для головной оптики представлял собой десяток дохленьких светодиодов, светивших в разные стороны, — о правильном светораспределении не стоило и мечтать. Однако вскоре появилось изделие Philips LED headlight, в котором узенькие полоски светодиодов в точности соответствовали расположению нити накаливания в обычной лампочке. А вскоре схожие по конструкции полупроводниковые источники света стали выпускать многие китайские мануфактуры.

Вообще-то, нельзя устанавливать светодиоды в фары, омологированные под галогенки, и мы не раз об этом писали. Но восточные производители упорно пишут на упаковках своих изделий Н4 или Н7! Незаконно? Безусловно. Однако оставим пока юридическую сторону вопроса. Наша главная задача — испытать светодиоды на профпригодность. С этой целью мы приобрели пять комплектов для установки в фары, предназначенные для работы с лампами Н4

Обращаем внимание, что все купленные светодиоды способны работать при напряжении как 12 В, так и 24 В. Это говорит о том, что в них применены добротные блоки стабилизации питания — так называемые драйверы

Выбираем ленту для машины

Постараюсь не лить воду, а кратко разберем на что обращать внимание при выборе светодиодной ленты

Тип светодиодной матрицы

Светодиодная подсветка салона. Для подсветки салона автомобиля, включая багажник выбирайте — SMD 3528 60шт/м (размер одного светодиодного кристалла — 3,5×2,8мм). Почему она?

Во-первых мы получаем среднюю мощность 4,4-4,8 Вт на погонный метр со световым потоком порядка 250-300 Лм. При такой мощности светодиоды не требуют теплоотвода и светодиодная лента спокойно монтируется на пластиковые элементы. А светового потока достаточно для полноценного освещения любых элементов салона.

Во-вторых это самая распространенная лента в продаже, покупаем в первом попавшемся магазине.

Варианты типа SMD 5050, 5630, 5730 не подойдут ввиду высокой мощности. Неприятно высокая яркость и необходимость монтировать но теплоотвод, делает их не самым удачным выбором для светодиодной подсветки салона машины.

Наружное освещение автомобиля. Тут включаем голову. Если LED подсветка под днищем авто, можно выбрать светодиоды помощнее — SMD 5050 30/60 шт/м. Алюминиевый профиль будет нашим теплоотводом (про монтаж дальше). Для светодиодной подсветки номера машины или (не дай бог) фар головного света — это плохой выбор. Подобная светодиодная подсветка будет приманкой для инспекторов ГИБДД (про правила установки и штрафы читайте в конце статьи).

Обычные светодиоды или RGB — разницы нет. RGB чуть дороже, ее сложнее подключать и требует дополнительно контроллера управления (подробнее про подключение RGB ленты). Зато она позволяет менять цвет подсветки.

Класс защиты

В продаже преимущественно три класса защиты – IP20, IP65, IP68.

  • IP20 – открытая лента без защитных покрытий, подходит для использования внутри сухих помещений. Боится влаги, пыли, любых механических воздействий.
  • IP65 – с защитным силиконовым слоем, способным защитить от конденсата.
  • IP68 – герметичные водонепроницаемая светодиоды, которые можно размещать на днище автомобиля.


Класс LED IP68 Для светодиодной подсветки бардачка или низа торпеды подойдет и IP20, если ее никто не будет дергать и поливать водой.

Для подсветки остальных элементов желателен класс IP 65-68.

В чем проблема?

Обычно светодиодные лампы берутся в габаритные огни наших с вами автомобилей, реже в подсветку или панель приборов. И вроде срок службы у них должен быть в разы больше ламп накаливая, однако получается все совсем наоборот. Дешевые варианты через пару месяцев начинают моргать, а через 3-4 могут вообще перегореть (наверное, все такое наблюдали на дорогах города, когда в «противотуманках» или габаритах, просто светомузыка).

Так почему такое происходит? Все банально и просто автомобильные варианты нормально работают при 12В и даже небольшой перепад в большую сторону начинает изнашивать их (как я писал выше идет разогрев и быстрая деградация).

А если вспомнит бортовую сеть автомобиля, то там практически никогда нет ровно 12В, даже если двигатель не запущен исправный аккумулятор дает 12,7В (это его нормальное напряжение). А вот после того как машина запускается генератор дает в бортовую сеть 13,8 – 14,2В (а в некоторых современных авто, где электроники навалом, может доходить до 14,5В).

Конечно есть нормальные ДОРОГИЕ фирмы, которые выпускают качественные варианты, например PHILIPS, OSRAM и т.д. НО стоимость ламп, скажем в габариты, может доходить до 1500 рублей за пару, не дешево! Зато гореть будут долго.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Что такое светодиоды

Устройство лампы

Светодиодом называется полупроводниковое устройство, которое способно излучать свет при пропускании через него электрического тока. Принято считать, что первый светоизлучающий диод (СИД) был сделан в 1962 году в университете Иллинойс. Однако широкое применение он получил недавно. Это связано с относительной дешевизной и тем, что наши лампы преобразуют ток непосредственно в световое излучение, в отличие от ламп накаливания или люминесцентных ламп.


Схема устройства

Светодиоды механически прочные и исключительно надежны. Срок их службы достигает 100 тыс. часов, что в 5-10 раз больше, чем у люминесцентных ламп, и почти в 100 раз больше, чем у ламп накаливания. В конце концов, это низковольтный, более безопасный прибор.

Разновидности

Существуют следующие параметры, по которым классифицируют разновидности светодиодов, а именно:

  • размер,
  • количество кристаллов в корпусе,
  • мощность,
  • яркость,
  • излучаемый цвету и т.д.

Как правило, в корпусе светодиода размещается только один полупроводниковый кристалл, который начинает светиться при протекании электрического тока. В случае с многоцветными лампами вместо одного кристалла вставляют несколько. Сами кристаллы при этом излучают различный свет, так как сделаны из разных материалов.


Цветовая политра

Применение

Как индикаторы обычно используют двухцветные лампочки (красного и зеленого цвета). Для создания световых экранов подойдут трехцветные светодиоды со следующими базовыми цветами: синий, зеленый, красный. При смешивании последних можно получить отображение фото и видео.

Для повышенной яркости в корпус одной лампы иногда устанавливают несколько кристаллов одного цвета. В таком случае яркость кратна их количеству.

Еще важно знать 3 нюанса о том, как собрать стабилизатор напряжения 12 вольт собственными руками

  1. Светодиоды желательно подключать через стабилизатор тока. Таким образом можно будет уравновесить колебания электрической сети, и хозяин автомобиля не будут беспокоиться о бросках тока.
  2. Требования к электропитанию нужно также соблюдать, поскольку, таким образом, свой самостоятельно собранный стабилизатор можно будет правильно подстроить под электрическую сеть.
  3. Собирать желательно такой агрегат, который обеспечит достойную устойчивость, надежность и стабильность – стабилизатор должен держаться в течение долгих лет. Именно поэтому на компонентах не стоит дешевить – приобретайте в хороших магазинах электроники.


Схемы простых стабилизаторов

Вольтметр

Не все авто оборудованы таким прибором как вольтметр. С помощью светодиодов можно собрать вольтметр, установив его на машину для измерения напряжения аккумулятора. Вольтметр в своем основании имеет микросхему LM3914, в котором есть стабилизатор, питающий его. Вольтметр измеряет уровень напряжения аккумулятора, визуально контролируя его 12 светодиодами. Все светодиодные лампы подключаются последовательно. Установка осуществляется своими руками на переднюю панель, над спидометром. На табло будет гореть только один из них. Регулятор поможет изменить характеристики яркости прибора, так как в ночное время глазам мешает большой поток света.

Разновидности 12В стабилизаторов

Существует несколько вариаций схем такого устройства для 12 Вольт, но самые распространенные – линейный и импульсный. Чем же они, по сути, отличаются?

  • Линейный стабилизатор является по своим свойствам обычным делителем напряжения, который получает входящее напряжение на одно из плеч, а на другом изменяет сопротивление, чтобы в результате на выходе получалось заданное напряжение. Если дельта входа/выхода слишком велика, КПД такого прибора резко падает, так как значительная часть энергии рассеивается в виде тепла — это приводит к необходимости охлаждения.
  • В импульсном варианте ток поступает в накопитель (конденсатор или же дроссель) короткими импульсами, сформированными ключом. Когда электронный ключ замыкается, накопленная энергия поступает на нагрузку, при этом значение напряжения остается стабильным. Сам процесс стабилизации происходит контролем длительности импульсов при помощи ШИМ. Такой вариант прибора имеет высокий КПД, однако наводит импульсные помехи на выходе, что не всегда приемлемо.

Также существуют автотрансформаторные и феррорезонансные аппараты, использующиеся преимущественно для переменного тока, но они относительно сложны.

Благодаря наличию множества электронных компонентов и радиодеталей в свободной продаже, любой, даже начинающий радиолюбитель, при необходимости может дома собрать для своих нужд стабилизатор напряжения на 12 Вольт – была бы схема.

Схемы стабилизаторов тока для светодиодов


Схема простейшего стабилизатора Самый простой стабилизатор напряжения на 12 вольт можно собрать по такой схеме. Резистор R1 ограничивает выходящую силу тока, R2 – выходящее напряжение. Конденсаторы, применяемые в данной схеме, уменьшают пульсации напряжения и увеличивают стабильность работы.

Потребности автомобилиста удовлетворит простейший механизм стабилизации, поскольку напряжение питания в сети автомобиля достаточно стабильно.

Чтобы сделать стабилизатор для диодов в авто потребуется:

  • Микросхема lm317;
  • Резистор как регулятор тока для светодиодов;
  • Инструменты пайки и монтажа.

Собираем по вышеприведенной схеме

Технические характеристики

7812 ещё называют регулятором с фиксированным напряжением в 12 В. При этом на вход микросхемы должно подаваться питание на 2-3 В больше, чем на выходе, иначе на нём не будет заявленных 12 В. Максимальный выходной ток может достигать 1,5 А с применением хорошего радиатора. Устройство технологически защищено: от теплового пробоя, короткого замыкания и превышения режимов безопасной работы (SOA). Что делает его практически «неубиваемым».

Максимальные параметры

Максимальными значениями характеристик для LM7812 считаются:

  • предельное напряжение на входе микросхемы не более 35 В;
  • сила тока на выходе до 1.5 А;
  • температура кристалла при работе может достигать +150 ОС;
  • температура хранения от -65 до +150 ОС;
  • допустимый нагрев припоя не более +230ОС, с интервалом до 10 сек.

Рассеиваемая мощность ограничена внутренней защитой (Internally limited), корпусным исполнением изделия и применением теплоотвода.

При расчёте максимальной рассеиваемой мощности работающего устройства применяют стандартную формулу PDmax = (TJmax — ТА) / θJA. Где TJmax – предельная температура кристалла, а ТА – предполагаемая для окружающего воздуха. θJA – это тепловое сопротивление к внешней среде, которое напрямую зависит от корпусного исполнения.

Например, для распространенных устройств в пластиковых ТО-220 θJA=54ОC/Вт. В случае использования радиатора, необходимо учитывать величину теплового сопротивления кристалла (θJC), которая составляет порядка 4ОC/Вт для такого корпуса.

Электрические параметры

Несмотря на то, что рассеиваемая мощность не приводится производителями в даташит вместе с максимальными параметрами, её рекомендованное значение прослеживается в электрических характеристиках LM7812. В столбце «условия тестирования» указана допустимая величина PD не более 15 Вт, при изменении напряжения на входе до 27 В и токе на выходе до 1 А. Температура кристалла, при этом, должна находится в диапазоне от 0 до +125ОС.

Данные представленные в этой таблице получены путем тестирования с двумя сглаживающими конденсаторами на входе (до 0,22 мкФ) и выходе (до 0,1 мкФ).

Целесообразность использования LT 1083/84/85

В схеме стабилизатора напряжения на 12 вольт может быть разная ИМС. В зависимости от серии микросхемы, условия для её работы разнятся. Микросборки серии LT 1083/84/85 можно применять для изготовления стабилизатора на такое напряжение.

К сведению. Ток на выходе LT 1083 может достигать 7 А, на LT 1084 и LT 1085 допустимые токи нагрузки – 5 А и 3 А, соответственно.

Конструкторы для радиолюбителей, поставляемые из Китая, предлагают самостоятельно собрать схему простого блока питания на подобной платформе стабилизаторов.

Стабилизатор, входящий в данную схему, выдаёт на выходе ток до 7,4 А. Резистор R2, позволяющий изменять величину выходного напряжения, можно заменить постоянным, подобрав его значение так, чтобы U на выходе было равно 12 В. Диоды подбираются на напряжение не менее 50 В и ток не менее 12 А.

Внимание! СН на этой микросхеме требует разницы напряжения между входом и выходом не менее 1,5 В. При выполнении этого условия ИМС будет выдавать стабильное напряжение. При этом она имеет тепловую защиту и защиту от превышения значения выходного тока

При этом она имеет тепловую защиту и защиту от превышения значения выходного тока.

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Стабилизатор напряжения 12 В своими руками для светодиодов

Итак, как я уже упоминал выше, рабочее питание в бортовой сети автомобиля не имеет постоянства, что может оказать губительное влияние на светодиоды, а это достаточно дорогое оборудование. Поэтому я задался целью рассказать, как сделать стабилизатор напряжения на 12 вольт своими руками точно так, как сделал его сам.

На верхнем изображении показана схема стабилизатора напряжения на 12 вольт, которой, собственно, я и воспользовался, но при этом убрал оттуда диод, так как он нужен в том случае, когда входящее напряжение меньше выходящего. В данной схеме мне понадобилось два стабилизатора, два конденсатора на 100 мкФ 16 В и два конденсатора на 330 мкФ 16 В. Кроме того, нужны провода, и я использовал проводку от старого компа – там изолированы концы, следовательно, как нельзя лучше подходят для приобретенных в магазине стабилизаторов.

Далее, чтобы собрать стабилизатор напряжения 12 вольт своими руками, нужны паечные работы согласно вышеприведенной схеме. Как вы понимаете, из-за небольшого количества деталей сделать это было совсем не сложно. Проблема заключалась в другом – куда спрятать собранную схему, точнее, что выбрать в качестве корпусной коробки. По большому счету, выбор подходящего вместилища продолжался недолго, так как на глаза попался киндер-сюрприз моего ребенка. В данной ситуации — это идеальный корпус, в который превосходно помещается вся собранная схема и при этом она отлично изолирована. 

Дальше, как говорится, дело техники. С двух сторон я просверлил отверстия и вывел через них провода. После этого, чтобы случайно не вырвать провод во время какого-либо ремонта, стабилизатор на 12 вольт нужно было как-то закрепить в этом корпусе. Здесь тоже не пришлось долго думать, так как клеил ноутбук, используя B7000. Клей отличный, убедился на практике и в данном случае просто заполнил пространство у проводов в отверстии этим клеем, который отвердел за полчаса. Так были собраны два устройства. После этого пошел в гараж и мультиметром зафиксировал напряжение, подключив светодиодную ленту: на входе было 12,86 В, на выходе – 11,97 В. 

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector