Генераторы python: что это такое и зачем они нужны
Содержание:
- Как работает устройство
- Почему геймеры ненавидят ГСЧ
- АСИНХРОННЫЙ ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА
- Автомобильный генератор
- Как создать бесконечную последовательность
- Как работает генератор: примеры кода
- Синхронная скорость асинхронного электродвигателя
- Что важно знать всем генераторам!
- Структуры возбуждения
- Технические параметры
- Трехфазное устройство
- Устройство генератора
- Устройство генератора
- Адсорбционные генераторы
- Более сложные схемы генераторов
- Назначение и устройство
- Магнитогидродинамические генераторы
Как работает устройство
В основе находится эффект электромагнитной индукции, а значит, возникает ток в проводнике. Это происходит за счет того, что последний пересекает силовые линии магнитного поля внутри устройства.
В основе действия находятся заряженные частицы, на которые действует сила Лоренца. Движение рабочего тела происходит поперек магнитного поля. Благодаря этому возникают потоки носителей зарядов с ровно противоположными направлениями. На этапе становления в МГД-генераторах применялись преимущественно электропроводные жидкости или электролиты. Именно они и являлись тем самым рабочим телом. Современные вариации перешли на плазму. Носителя зарядов для новых машин стали положительные ионы и свободные электроны.
Почему геймеры ненавидят ГСЧ
Геймеров можно разделить на соревнующихся игроков, спидраннеров и средних игроков. Любой конкурентоспособный игрок, овладевший техникой игры и движениями, захочет бросить вызов другим игрокам и побеждать на основе навыков и, несомненно, возненавидит игру, если на результат повлияет генератор случайных чисел. Точно так же спидраннер хотел бы завершить игру как можно скорее, но алгоритм генератора случайных чисел включает тормоза, создавая каждый раз неизвестные и неожиданные сценарии в игре.
В идеале геймеры хотели бы уменьшить количество случаев, когда они сталкиваются со средством генерации случайных чисел в игре, чтобы держать весь игровой процесс и результат под своим контролем. Но, это возможно лишь до определенной степени. И когда геймер часами осваивает игрового персонажа и его движения, он больше всего расстраивается, когда случается что-то случайное, и вся стратегия нарушается. Иногда это тоже действует как благословение, но обычно это проклятие.
Кто такой RNGesus?
Обычные игроки, которые играют только для того, чтобы развлечься или скоротать время, не заботятся о результате игры. Но, опытные профессиональные игроки ненавидят проигрывать только потому, что удача была не в их пользу.
Игроки, которые проигрывают, часто винят в своих поражениях злой ГСЧ, который выгоден их противникам. Там где зло, должен быть Бог – RNGesus.
Среди геймеров во всем мире появился новый термин, RNGesus, который больше соответствует игре слов с «Иисусом». Поскольку Иисус Христос считается нашим спасителем в реальном мире, RNGesus – это вообразимая сущность, созданная для спасения игроков от пагубных последствий ГСЧ. Это нигде не доказывается, но началось как миф, а теперь распространилось по игровому сообществу, как лесной пожар.
АСИНХРОННЫЙ ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА
Особенности конструкции и виды.
Принципиальное отличие асинхронных генераторов (АГ) от их синхронных аналогов заключается в отсутствии жесткой связи частоты вращения ротора с тем же параметром для ЭДС, наводимой в статоре.
Из-за особенностей конструкции индуктора при взаимодействии вращающегося и неподвижного э/м полей скорость вращения вала чуть меньше частоты наведенной в катушках статора ЭДС.
Разность между этими показателями называют «скольжением». Указанный эффект возникает из-за того, что индуктор изготавливается в виде короткозамкнутой решетки.
Ротор «беличья клетка»
Известные модели асинхронных генераторов различаются по следующим рабочим параметрам:
- способ возбуждения;
- методы стабилизации и управления;
- диапазон скольжений.
Кроме того, такие агрегаты могут отличаться количеством генерируемых фаз.
Управление режимами.
Для возбуждения рабочих обмоток асинхронных генераторов потребуются внешние воздействия, реализуемые различными по своей эффективности способами. При этом возможны два режима управления запуском: мягкий и жесткий.
Не вдаваясь в подробности процесса управления и обходясь без теоретических выкладок, отметим следующее:
- мягкий режим характеризуется быстрым и безопасным выходом на стационарный рабочий ход спустя какое-то время после запуска асинхронной машины;
- жесткий режим связан с повышенным расходом энергии и дополнительными рисками для системы;
- для реализации последнего чаще всего применяются способы внешнего воздействия (подкачки).
Мягкий запуск с возбуждением обмоток требует больших дополнительных затрат, связанных с использованием дорогостоящих электронных систем.
В простейшем случае обходятся жестким режимом, реализуемым с помощью комплекта конденсаторов или специального компенсатора. В обоих случаях дополнительные элементы подкачки энергии подключаются к статорной обмотке (якорю).
Преимущества и особенности применения.
К числу бесспорных достоинств асинхронных электрогенераторов относят следующие особенности:
- устойчивость к перегрузкам и кз;
- простота конструкции и легкость обслуживания;
- малые линейные искажения формируемого сигнала;
- низкий уровень тепловыделения.
Показатель нелинейных искажений синусоиды у устройств этого класса не превышает 2% (против 15 процентов у синхронных машин); Благодаря этому использование таких электрогенераторов гарантирует устойчивость функционирования подключенного оборудования.
Кроме того, их применение обусловлено способностью вырабатывать активную мощность лишь при условии наличия в нагрузочной цепи реактивной составляющей.
Соблюдение этого требования возможно только в системах, включающих в свой состав индуктивные или емкостные нагрузки. В случае необходимости эти агрегаты могут использоваться в качестве асинхронных двигателей.
С учетом всего сказанногоасинхронные генераторы применяются:
- в функции генератора пиковых нагрузок – в тепло- и гидроэлектростанциях, а также в ветряных установках небольшой мощности;
- в двигательном режиме они нередко применяются для холодной обкатки двигателей внутреннего сгорания;
- при горячей обкатке асинхронная машина переводится в режим генератора, нагружая двигатель и отдавая энергию в бортовую сеть.
В авиации двигательный режим востребован при запуске турбин, а в качестве генератора он обеспечивает бортовые сети переменным и постоянным током.
Для получения постоянной составляющей в бортовой сети устанавливаются мощные выпрямительные устройства.
В системах следящего привода, в автоматических системах управления, а также в ряде цифровых устройств применяются асинхронные тахогенераторы, работающие с полым или короткозамкнутым ротором.
* * *
2014-2021 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Автомобильный генератор
Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.
Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.
Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор – током.
Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.
У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.
Как создать бесконечную последовательность
Рассмотрим, как можно с помощью генератора создать математическую последовательность, например, программу, генерирующую простые числа (напоминаем, это числа, не имеющие делителей, кроме 1).
Наша программа будет последовательно анализировать целые числа больше 1. Для каждого числа n программа ищет делители в диапазоне от 2 до √n. Если делители есть, программа переходит к следующему числу. Если их нет, значит, n — число простое, и программа выводит его на печать.
Этот код выдаёт бесконечную последовательность простых чисел без ограничения сверху. Остановить его можно только вручную.
Как работает генератор: примеры кода
Как сказано в документации Python [], генератор — это удобный способ реализовать протокол итератора, так как нет необходимости создавать классы. Представим тот же CountDown в виде генератора:
def countdown(start): count = start + 1 while count > 0: yield count count -= 1
С тем же результатом:
>>> counter = countdown(5) >>> for i in counter: ... print(i) 5 4 3 2 1 0
Такая функция ведет себя как обычный итератор, а yield возвращает объект генератора. Ключевое слово yield можно сравнить с return, но yield сохраняет текущее состояние локальных переменных. Следующее обращение к генератору вызывает метод , который возобновляет работу строк, стоящих после yield, с сохранёнными локальными переменными. Работа будет выполняться до появления ключевого слова yield. В нашем примере всего один yield, находящийся в цикле.
Синхронная скорость асинхронного электродвигателя
Дата добавления: 2014-10-07 ; ; Нарушение авторских прав Синхронной называют скорость ротора асинхронного двигателя n , равную скоро-
cти вращения магнитного поля обмотки статора n
( n = n ).
Cинхронную скорость выражают в единицах частоты вращения «n», об/мин, или угловой частоты «ω», рад/с ( или с
) при помощи таких формул:
n
= и ω = .
В обеих формулах:
f = 50 Гц — частота переменного тока;
р — число пар электромпгнитных полюсов обмотки статора электродвигателя.
Составим таблицу со значениями скоростей идеального холостого хода (таблица 1),
для чего используем формулы ( 1 ) и ( 2 ). Таблица1
Синхронные скорости ротора 3-фазного асинхронного двигателя
Число пар полюсов | |||||
Частота вращения, об/мин | |||||
Угловая скорость, с | 104,66 | 78,5 | 62,8 | 52,33 | 39,25 |
При необходимости можно рассчитать значения скоростей ротора и при других значениях числа пар полюсов.
Значения синхронных скоростей широко применяют в теории и при решении задач.
Источник
Частота вращения ротора, при которой работает асинхронный электродвигатель, зависит от частоты питающего напряжения, от мощности текущей нагрузки на валу, и от числа электромагнитных полюсов данного двигателя. Эта реальная частота вращения (или рабочая частота) всегда меньше так называемой синхронной частоты, которая определяется лишь параметрами источника питания и количеством полюсов обмотки статора данного асинхронного двигателя.
Таким образом, синхронная частота вращения двигател я — это частота вращения магнитного поля обмотки статора при номинальной частоте питающего напряжения, и она несколько отличается от рабочей частоты. В итоге количество оборотов в минуту под нагрузкой всегда меньше так называемых синхронных оборотов.
На приведенном рисунке видно, как синхронная частота вращения для асинхронного двигателя с тем или иным количеством полюсов статора зависит от частоты питающего напряжения: чем выше частота — тем выше угловая скорость вращения магнитного поля. Так например в частотно-регулируемых приводах меняя частоту питающего напряжения изменяют синхронную частоту двигателя. При этом изменяется и рабочая частота вращения ротора двигателя под нагрузкой.
Обычно обмотку статора асинхронного двигателя питают трехфазным переменным током, который и создает вращающееся магнитное поле. И чем больше пар полюсов — тем меньшей будет синхронная частота вращения — частота вращения магнитного поля статора.
Большинство современных асинхронных двигателей имеют от 1 до 3 пар магнитных полюсов, в редких случаях 4, ведь чем больше полюсов — тем ниже КПД асинхронного двигателя. Однако при меньшем количестве полюсов скорость вращения ротора можно менять очень-очень плавно, изменяя частоту питающего напряжения.
Как уже было отмечено выше, реальная рабочая частота асинхронного двигателя отличается от его синхронной частоты. Почему так происходит? Когда ротор вращается с частотой меньшей чем синхронная, то проводники ротора пересекают магнитное поле статора с некоторой скоростью и в них наводится ЭДС. Эта ЭДС создает токи в замкнутых проводниках ротора, в результате данные токи взаимодействуют с вращающимся магнитным полем статора, и возникает крутящий момент — ротор увлекается магнитным полем статора.
Если момент имеет достаточную величину чтобы преодолеть силы трения, то ротор начинает вращаться, при этом момент электромагнитный равен тормозящему моменту, который создают нагрузка, силы трения и т. д.
Что важно знать всем генераторам!
ТЕПЕРЬ ВНИМАНИЕ!
ЭТО ВАЖНО!
Классический Дизайн говорит: «Генератор не может совершать инициативу, генератор создан для реализации возможностей». И с этим можно поспорить, даже не согласиться. Потому что практика показывает, да и далеко ходить не нужно я сама Манифестирующий Генератор, подтверждаю, что всё работает чуть-чуть иначе. И это чуть-чуть иначе меняет всю картину напрочь. Объясню.
Пример. Просыпается Генератор утром, и он думает: «Ну, мне, наверное, пора вложиться в пассивный доход, потому что хочется больше денег, хочется финансовой свободы, что-то интересное…» Тут СТОП!!! Это мысли, это ум. Надо проверить есть подключение или нет.
А вот если Генератор проснулся утром и спонтанно говорит: «Да, я хочу, я готов начать вкладываться в пассивный доход». Тогда пожалуйста — вперед. Это действительно состояние подключения, когда Вас просто физически тянет что-то реализовать.
Может быть и одновременно: Генератор проснулся утром и у него и причины в голове почему он хочет создать пассивный доход и одновременно подключение.
ГЕРЕРАТОРЫ, ВОЗЬМИТЕ СЕБЕ ЗА
ПРАКТИКУ – МЫСЛИ, УМ В
СТОРОНУ И ПЫТАЕМСЯ ИХ
ОТКЛЮЧИТЬ!!!
Структуры возбуждения
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле.
Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения.
Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.
Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:
- Первая стадия возбуждения, то есть начальная.
- Работа вхолостую.
- Подключение к сети способом точной синхронизации либо самосинхронизации.
- Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
- Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
- Электроторможение аппарата.
Технические параметры
Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:
- отношения между величинами на холостом ходу;
- внешние параметры;
- регулировочные значения.
Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).
Внешняя характеристика ГПТ
В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.
Свойства ГПТ с параллельным возбуждением
Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.
Свойства ГПТ с последовательным возбуждением
При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.
В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.
Вам это будет интересно Особенности балласта 4х18
При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.
Свойства ГПТ со смешанным возбуждением
Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.
КПД
Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения
Мощные агрегаты имеют коэффициент полезного действия около 90 %
При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.
КПД
ЭДС
Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.
Мощность
Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.
Реакция якоря
Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.
Реакция ротора
Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.
Трехфазное устройство
Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.
Результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.
Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.
Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии.
Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.
Устройство генератора
Данный генератор состоит из двух частей, одна из которых является неподвижной и называется статор и является основанием.
Подвижная часть называется ротором, он вращается внутри статора.
Статор и ротор изготавливают из специальной электротехнической стали, которая очень хорошо проводит магнитные потоки, образующиеся при их работе.
Асинхронные генераторы могут быть как трехфазными, так и однофазными. Это зависит от количества и типа соединения обмоток в статоре и роторе.
Токопроводящую часть роторов выполняют алюминия и электротехнической стали.
При начале вращения генератора двигателем внутреннего сгорания, расположенном на одной платформе вместе с генератором, образуется бегущее магнитное поле, которого впоследствии преобразуется в электрический ток.
Устройство генератора
Практически все они похожи по своему устройству, но есть некоторые отличия — это способ приведения механической части в движение (рисунок 1).
Он состоит из основных узлов:
- корпус;
- статор;
- ротор, или якорь;
- коробка коммутации.
Рисунок 1. Генератор в разрезе
Корпус, выполняющий функцию рамы, служит для крепления всех основных частей. Кроме того, в нём устанавливаются подшипники, необходимые для плавного вращения вала и увеличения срока службы устройства. Корпус изготавливают из прочного металла, а также он служит для защиты внутренних частей машины от внешних повреждений.
Статор имеет магнитные полюса, представленные в виде закреплённой обмотки для возбуждения магнитного потока Ф. Выполняется из спецстали, которая называется ферромагнитной. Ротор является подвижной частью, причем его приводит в движение какая-либо сила. В результате на якоре (роторе) образуется разность потенциалов или напряжение (U). Узел (коробка) коммутации, необходим для отведения электричества от ротора. Он состоит из проводящих колец, соединённых с графитовыми токосъёмными контактами.
Адсорбционные генераторы
Метод адсорбции позволяет получить технический кислород чистотой 90 — 95%, который можно применять для газопламенной резки, извлечения из руд ценных металлов, а также для других технологических задач.
Основной элемент установки — адсорбер. Он представляет собой емкость, заполненную цеолитом. В адсорбер закачивают воздух, и минерал поглощает азот, а целевой продукт поступает к потребителям. Процесс адсорбции проходит при пульсирующем давлении 3 — 8 атмосфер, после чего оно сбрасывается до атмосферного и проходит фаза регенерации цеолита. Так как работают генераторы кислорода непрерывно, в их состав входит минимум два адсорбера.
Эксплуатация установок не требует применения реагентов. Цеолит полностью регенерируется, и если для сжатия воздуха применяется безмасляный компрессор, может служить бесконечно долго.
Более сложные схемы генераторов
Несмотря на то, что ток протекает только в одном направлении, и поэтому называется громко постоянным, постоянно изменяется его величина, из-за чего подобные схемы практически неприменимы на практике. Давайте теперь рассмотрим строение более сложных генераторов, которые позволяют получить ток с меньшей пульсацией.
Двухвитковый генератор
- Давайте представим себе такую конструкцию генератора, в которой перпендикулярно друг другу расположены две рамки, соединенные в свою очередь с коллектором, который теперь сделан не из полу, а четвертьколец.
- При вращении рамок или витков, в них также как и в предыдущем случае возникает ЭДС. Однако максимальное и минимальное значение «Е» теперь достигается не через пол оборота всей рамки, а через четверть, то есть поворот одного витка на 90 градусов.
- На представленном выше рисунке хорошо видно, что через сторону витка 1, ровно, как и через сторону 3 (считаем в примере по часовой стрелке) протекает максимальный ток, тогда как на частях 2 и 4 ЭДС будет равна нулю, так как эти проводники скользят вдоль силовых линий.
- Соответственно конструкция всего генератора делается таким образом, чтобы именно в этот момент щетки касались контактных пластин коллектора 1 и 3.
- Представим вращение генератора. При этом значение ЭДС на витке 1 начинает убывать, тогда как на 2, наоборот, возрастать. Когда будет совершена 1\8 полного оборота, Е1 будет минимальна, но она не будет соответствовать нулю, так как проводник до сих пор при движении пересекает силовые линии.
- Именно в этот момент и происходит перемена щеток на противоположные, и ЭДС начинает снова расти, так и не упав до нуля. Теперь ток начинает течь по витку, постепенно возрастая до своего максимума. Спустя четверть оборота снова происходит смена щеток, и так далее. Подробнее понять изменившиеся величины ЭДС можно из следующего графика.
Пульсации ЭДС на четырехвитковом генераторе
Получается, что щетки постоянно соединены с «активными проводниками», в которых ЭДС постоянно колеблется от Еmin до Еmax.
Во внешней цепи при этом ничего не меняется, из-за разбитого на четыре части коллектора. Ток продолжает течь все в том же направлении от щетки 2 к щетке 1. Он, как и прежде, будет пульсировать, и пульсации станут происходить в два раза чаще, однако разница максимальных и минимальных величин ЭДС будет значительно меньше, чем в предыдущем случае.
Идя дальше по этому принципу, и увеличивая количество вращающихся витков и коллекторных пластин можно добиться минимальной пульсации постоянного тока, то есть он действительно станет практически постоянным.
Продолжаем усложнять схему
Рассматривая предложенные схемы генераторов, не сложно догадаться, что хоть увеличенное количество витков и уменьшает пульсации, сам генератор становится все менее эффективным. Так как фактически щетки одномоментно контактируют только с одной рамкой, когда другие остаются неиспользуемыми. ЭДС одного витка невелика, поэтому и мощность генератора будет невысокой.
Чтобы использовать весь потенциал генератора, витки соединяют друг с другом последовательно по определенной схеме, а количество коллекторных пластин уменьшают до числа витков обмотки.
К каждой коллекторной пластине будет подходить начало одного витка и конец другого. При этом витки представляют собой источники тока, соединенные последовательно, и все вместе это называется обмотка якоря или ротора генератора. При таком соединении сумма ЭДС будет равна индуктируемым значениям в витках, включенных между щетками.
При этом количество витков делается достаточно большим, чтобы можно было получить требуемую мощность генератора. Именно по этой причине, особо мощные генераторы, например, от тепловозов, имеют очень большое количество пластин.
Назначение и устройство
Современные генераторы переменного тока работают по тому же принципу, но в качестве движущей силы используют различные механизмы. Основное назначение генератора переменного тока — это преобразование какого-либо типа энергии в электрический ток. В качестве источника энергии может быть:
- Мощный поток воды. Такие устройства используются на ГЭС. Генератор приводится в действие за счет протекания воды по узкому каналу и вращения турбины. Вращающиеся лопасти турбины раскручивают вал генератора, тем самым преобразуя механическую энергию в электричество.
- Сжигание газа. Характерно для ТЭС.
- Использование силы ветра. Такие генераторы устанавливают в наиболее ветряных районах. Главный недостаток в полном отключении в безветренную погоду.
- Использование атомной энергии.
- Применение дизельных или бензиновых двигателей для вращения стационарных или автомобильных генераторов.
Генератор или альтернатор переменного тока состоит из следующих частей:
- Статор. Является неподвижной частью устройства. Изготавливается из стальных листов, которые обеспечивают устойчивость к нагрузкам. В статоре прорезаны длинные пазы, в которых содержится проволочная обмотка. Данная обмотка отводит сгенерированный ток.
- Ротор. Является подвижной частью. Устанавливается непосредственно по центру статора. Для точной центровки устанавливается на подшипники, которые вмонтированы в переднюю и заднюю крышки корпуса. Сам ротор является электромагнитом. На нем также есть пазы и уложенная в них обмотка. Она необходима для возбуждения статора и генерации электромагнитного поля.
- Якорь. На нем смонтирован ротор с обмоткой. Он нужен для передачи крутящего момента от двигателя или турбины.
- Коллектор. Коллектор состоит из нескольких изолированных пластин, который представляют собой 2 основных полукольца. Каждое соединяется с обмоткой ротора. Одна половина с полюсом «+», другая с минусовым полюсом. Коллектор электрогенератора необходим для выпрямления и перенаправления переменного тока.
- Угольные щетки. На некоторых моделях их заменяют контактными пластинами. Через угольные щетки осуществляется подача постоянного тока от аккумулятора, который используется для предварительного возбуждения обмотки ротора.
Это самые основные части, из которых состоит простейший альтернатор. Мы рассмотрели устройство и принцип действия современного генератора переменного тока.
Генераторы такого типа могут быть синхронными и асинхронными. Оба устройства практически идентичны. Разница между ними заключается в следующем. Синхронные и асинхронные модели отличаются наличием обмотки на роторе (синхронный) или ее отсутствием (асинхронный). Также различия заключаются в принципе возбуждения, схемы подключения.
Магнитогидродинамические генераторы
Принцип действия магнитогидродинамического генератора (МГД – генератора) заключается в том, что при движении ионизированного газа (низкотемпературной плазмы) через сильное магнитное поле в нем индуцируется электрический ток. Низкотемпературная плазма возникает при нагревании газа до температуры 2300 – 3000 К, когда от его молекул или атомов отрываются внешние электроны, вследствие чего газ ионизируется и становится проводником электрического тока.
Электроэнергия (постоянный ток) отбирается из плазмы керамическими электродами и выдается в цепь и далее в инверторы, где преобразуется в переменный ток, поступающий в сеть. Для увеличения электропроводности газа в него дополнительно вводят легкоионизируемые вещества – щелочные металлы: калий, натрий и др.
В МГД – генераторах отсутствуют громоздкие вращающиеся части, отпадает необходимость применения турбомашин для привода генератора.
МГД – генераторы разрабатываются двух типов: открытого цикла, в которых рабочим телом являются продукты сгорания органического топлива, и закрытого цикла, в которых непрерывный поток инертных газов (аргона, водорода) нагревается в теплообменниках продуктами сгорания.
На рис.3.7 представлена схема магнитогидродинамической установки. Атмосферный воздух сжимается в компрессоре 1 и после предварительного нагрева в регенераторе 2 поступает в камеру сгорания 3. Туда же подается топливо и присадки. Нагретые до температуры2500 – 3000 К. продукты сгорания поступают в сопло 4, где расширяются, а затем в канал 5,где генерируют электрический ток, пересекая магнитное поле. Для создания сильного магнитного поля снаружи канала 5 размещена обмотка 6, к которой подведен переменный электрический ток от блока питания 7. В канале МГД – генератора размещены керамические электроды для отвода электроэнергии.
Рис. 3.7-Схема магнитогидродинамической установки
1 – компрессор; 2 – регенератор; 3 – камера сгорания; 4 – сопла; 5 – канал МГДГ; 6 – обмотка электромагнитов; 7 – блок питания магнитов; 8 – электроды; 9 – парогенератор; 10 – турбина; 11 – конденсатор; 12 – насос.
Отработанные газы с температурой до 2300 К. поступают в регенератор 2, где частично отдают тепло поступающему воздуху и далее направляются в парогенератор 9, где вырабатывают водяной пар. Охлажденные до температуры 1500 С отработанные газы выбрасываются в атмосферу. Полученный водяной пар поступает в турбину 10, затем конденсируется в конденсаторе 11 и насосом 12 вновь закачивается в парогенератор.
МГД-генератор позволяет значительно повысить начальную температуру рабочего тела, и, следовательно, КПД электростанции.
МГД-генератор в комплексе с обычным турбогенератором в качестве второй ступени дает возможность повысить общий КПД такой энергетической установки до 50 – 60%.