Что такое мощность двигателя, крутящий момент и удельный расход топлива
Содержание:
- Электродвигатели
- Киловатты (кВт)-
- Как рассчитывается мощность двигателя?
- Ссылки
- Основные параметры электродвигателя
- История [ править | править код ]
- Расчет мощности по массе и времени разгона до сотни
- Классификация электродвигателей
- Крутящий момент vs. мощность. Связь с динамикой автомобиля
- Роль мощности и крутящего момента двигателя
- Расчетная мощность (определение)
- Режимы работы электродвигателей
- Одинаковый объем совсем не означает одинаковые двигатели
- Максимальная и номинальная мощность двигателей
- Почему мощность двигателя измеряется в лошадиных силах?
Электродвигатели
- Основные параметры электродвигателя
- Момент электродвигателя
- Мощность электродвигателя
- Коэффициент полезного действия
- Номинальная частота вращения
- Момент инерции ротора
- Номинальное напряжение
- Электрическая постоянная времени
- Механическая характеристика
- Сравнение характеристик электродвигателей
- Области применения электродвигателей
- Производители электродвигателей
В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.
По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.
Областью науки и техники изучающей электрические машины является — электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.
Киловатты (кВт)-
С технической стороны вопроса эта форма измерения считается наиболее универсальным методом вычисления мощности силового агрегата. Ей пользуются инженеры всего мирового пространства.
Ватт- это единица измерения которая входит в систему СИ (Международную систему единиц) и которая означает, сколько потребуется мощности для выполнения работы в 1Дж за единицу времени.
В основном данный метод-подсчет используется профессионалами, как «наиболее правильный» с точки зрения фундаментальной науки в показателях мощности. Как единица измерения в автомобильной сфере она используется в основном в Южном полушарии нашей планеты, так уж исторически сложилось.
Метод измерения мощности в киловаттах на автомобилях в основном происходит путем нахождения величины крутящего момента передаваемого от колес на динамометрическом стенде, а затем для подсчетов применяется данное уравнение:
Киловатты стали современной мерой фиксации выходной мощности автомобилей и возможно в будущем они станут общепринятой мировой мерой подсчета. По крайней мере, если посмотреть на любые официальные данные предлагаемые автопроизводителями, то обязательно можно увидеть единицы кВт мощности двигателей внутреннего сгорания установленные наравне с лошадиными силами.
Как рассчитывается мощность двигателя?
Лошадиные силы двигателя автомобиля не измеряются лошадьми на практике, и это очевидно. Но как рассчитать мощность двигателя автомобиля другим способом? Всё очень просто: если Вы хотите узнать, сколько лошадиных сил в двигателе машины, Вы подключите двигатель к специальному динамометру. Динамометр создаёт нагрузку на двигатель и измеряет количество энергии, которое может развить двигатель против нагрузки. Но, тем не менее, чтобы рассчитать мощность двигателя, есть ещё один шаг, который необходимо преодолеть, и об этом мы сейчас поговорим.
Крутящий момент
Представьте себе, что у Вас есть большой торцевой гаечный ключ с ручкой на нём в 1 метр длиной, и Вы надавите на него весом 100 грамм. То, что Вы делаете, называется применением крутящего момента, у которого также есть своя единица измерения, и в данном случае она рассчитывается как 1 ньютон*метр (Н*м), потому что Вы давите 100 граммами (что примерно равно 1 Ньютону) с «плечом» в 1 метр. Вы сможете получить тот же 1 Н*м, если, к примеру, надавите весом в 1 кг на торцевой ключ с длиной ручки в 10 см.
Аналогично, если Вы вместо торцевого ключа приложите вал двигателя, то двигатель даст некоторый показатель крутящего момента на вал. Динамометр измеряет этот крутящий момент. А далее Вы можете легко конвертировать крутящий момент в лошадиные силы путём простой формулы и, таким образом, рассчитать мощность машины. Формула эта выглядит следующим образом:
Мощность двигателя = (Обороты в минуту * Крутящий момент)/5252.
Вы можете получить представление о том, как динамометр работает, следующим образом: представьте, что Вы включаете двигатель автомобиля при включенной нейтральной передачей и жмёте педаль акселератора «в пол». Двигатель будет работать так быстро, что может взорваться. Это не есть хорошо, но так, при помощи динамометра Вы можете измерить крутящий момент двигателя на разных оборотах. Вы можете подключить двигатель к динамометру, нажать на педаль газа и создать в динамометре достаточное количество нагрузки на двигатель, чтобы сохранить его работу, скажем, на 7 000 оборотов в минуту. Вы записываете при это на бумагу, с какой максимальной нагрузкой двигатель может справиться. Тогда Вы начинаете применять дополнительную нагрузку, чтобы сбить скорость двигателя до 6 500 оборотов в минуту и снова записать нагрузку в новом режиме. Тогда Вы сбросите нагрузкой двигатель до 6 000 оборотов в минуту, и так далее. Вы можете сделать то же самое вплоть до критически низких 500 или 1 000 оборотов в минуту. Что динамометры делают — так это фактически измеряют крутящий момент и далее конвертируют крутящий момент в лошадиные силы, рассчитывая мощность.
Тем не менее, крутящий момент, хоть и растёт вместе с мощностью при росте оборотов, тем не менее, не всегда значение мощности прямо пропорционально крутящему моменту. Так, если Вы построите график мощности и крутящего момента по оборотам вращения двигателя, делая отметки с шагом в 500 оборотов, то, что Вы в конечном итоге получите, является кривой мощности двигателя. Типичная кривая мощности для высокопроизводительного двигателя может выглядеть следующим образом (в примере 300-сильный мотор Mitsubishi 3000):
Данный график указывает на то, что любой двигатель имеет пиковую мощность, которую можно рассчитать динамометром — значение оборотов в минуту, при которых мощность двигателя достигает своего максимума. Двигатель также имеет максимальный крутящий момент в определённом диапазоне оборотов в минуту. Вы можете часто видеть в технических характеристиках автомобилей указание наподобие «123 л.с. при 4 600 об./мин., 155 Нм при 4 200 об./мин.». А ещё, когда люди говорят, что двигатель «низкооборотистый» или «высокооборотистый», то они имеют в виду, что максимальный крутящий момент двигателя достигается на довольно низкой или высокой величине оборотов соответственно (например, дизельные двигатели по своей природе являются низкооборотистыми, и потому (но не только поэтому) их часто используют на грузовых автомобилях и тракторах, а вот бензиновые двигатели, напротив, высокооборотистые).
Как мы видим, рассчитать мощность двигателя машины является не такой уж и сложной задачей для специалистов, вооружённых динамометром.
Ссылки
Wikimedia Foundation . 2010 .
Смотреть что такое «Мощность (физика)» в других словарях:
ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств … Физическая энциклопедия
Физика — Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия
Физика — I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия
Физика высоких плотностей энергии — Физика высоких плотностей энергий (англ. High Energy Density Physics, HED Physics) раздел физики на стыке физики конденсированного состояния и физики плазмы, занимающийся изучением систем, имеющих высокую плотность энергии. Под высокой … Википедия
Электрическая мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность … Википедия
Основные параметры электродвигателя
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
,
- где M – вращающий момент, Нм,
- F – сила, Н,
- r – радиус-вектор, м
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
,
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин-1
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)
Мощность электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Мощность электродвигателя постоянного тока
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
,
- где P – мощность, Вт,
- A – работа, Дж,
- t — время, с
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .
,
где s – расстояние, м
Для вращательного движения
,
где – угол, рад,
,
где – углавая скорость, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
,
- где – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (), Вт
При этом
потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
,
- где J – момент инерции, кг∙м2,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)
1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)
Момент инерции связан с моментом силы следующим соотношением
,
где – угловое ускорение, с-2
,
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
,
где – постоянная времени, с
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.
История [ править | править код ]
Лошадь с древних времён использовалась людьми в качестве тяглового скота. В XVIII веке, на основе наблюдений за работой лошадей были выполнены расчёты, показывающие какую полезную мощность имеет лошадь при длительной работе. Так, Дезагюлье определил мощность лошади в 103 кгс·м/с, Смитон в 53 кгс·м/с, Тредгольд в 64 кгс·м, Уатт в 76 кгс·м/с .
Приблизительно в 1789 году шотландский инженер и изобретатель Джеймс Уатт ввел термин «лошадиная сила», чтобы показать, работу скольких лошадей способны заменить его паровые машины. В частности утверждается, что одну из первых машин Уатта купил пивовар, чтобы заменить ею лошадь, которая приводила в действие водяной насос . Согласно распространенной легенде, при этом пивовар решил сжульничать, выбрав самую сильную лошадь и заставив её работать на пределе сил. Уатт принял и даже превысил полученную пивоваром цифру, и эталоном стала именно мощность построенной машины, несмотря на то что реальная мощность, которую развивает лошадь при нормальной работе в течение продолжительного времени, значительно меньше — по некоторым оценкам, в полтора раза.
В то время в Англии для поднятия из шахт угля, воды и людей использовались бочки объёмом от 140,9 до 190,9 л . Существовала (и существует) единица объема баррель, основанная на массе типовой бочки (англ. barrel ) с грузом, которая весила 380 фунтов ( 1 фунт = 0,4536 кг ), то есть 1 баррель = 172,4 кг. Вытащить такую бочку могли только две лошади за канат, перекинутый через блок. Усилие средней рабочей лошади в течение 8 часов работы составляет 15 % от её веса или 75 кгс при массе лошади в 500 кг . За 8 часов лошадь с таким усилием может пройти 28,8 км со скоростью 3,6 км/ч ( 1 м/с ).
Расчет мощности по массе и времени разгона до сотни
Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.
Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.
Классификация электродвигателей
- Универсальный
- Репульсионный
КДПТ с обмоткой возбуждения Включение обмотки
Независимое
Последовательное возбуждения
Параллельное
Комбинированное
- КДПТ с постоянными магнитами
- БДПТ (Бесколлекторный двигатель + ЭП |+ ДПР)
- ВРД (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
- Трехфазный (многофазный) АДКР
- АДФР
Двухфазный (конденсаторный)
Однофазный
- с пусковой обмоткой
с экранированными полюсами
с асимметричным магнитопроводом
- СДОВ
- СДПМ СДПМВ
- СДПМП
- Гибридный
СРД
Гистерезисный
Индукторный
Гибридный СРД-ПМ
Реактивно-гистерезисный
Шаговый 5
- Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
- Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
- Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
- Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
- Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
- КДПТ — коллекторный двигатель постоянного тока
- БДПТ — бесколлекторный двигатель постоянного тока
- ЭП — электрический преобразователь
- ДПР — датчик положения ротора
- ВРД — вентильный реактивный двигатель
- АДКР — асинхронный двигатель с короткозамкнутым ротором
- АДФР — асинхронный двигатель с фазным ротором
- СДОВ — синхронный двигатель с обмоткой возбуждения
Крутящий момент vs. мощность. Связь с динамикой автомобиля
Мощность — производное такого явления, как крутящий момент, ею выражается работа силовой установки, выполненная за определенное время. А поскольку КМ олицетворяет собой непосредственную работу мотора, то в виде мощности отражается величина момента в соответствующий период времени.
Где: P в формуле означает мощность, М — крутящий момент, N — обороты двигателя за минуту, а 9549 — коэффициент обращения N в радианы в секунды. Результатом вычислений по данной формуле будет являться число в киловаттах. Когда нужно перевести полученный результат в лошадиные силы, полученное число умножают на 1.36.
По сути, крутящим моментом является мощность при неполных оборотах, например, во время обгона. Мощность возрастает по мере роста момента, и чем выше этот параметр, тем больше запас кинетической энергии, тем легче автомобиль преодолевает противодействующие на него силы и тем лучше его динамические характеристики.
При этом важно помнить, что мощность достигает своих максимальных значений не сразу, а постепенно. Ведь с места автомобиль трогается на минимуме оборотов, и затем скорость наращивается
Именно здесь и подключается сила под названием крутящий момент, и именно она определяет тот самый временной отрезок, за который авто достигнет своей пиковой мощности, или, другими словами, скоростную динамику.
Из этого следует, что машина с силовым агрегатом мощнее, но обладающим недостаточно высоким крутящим моментом, уступит по скорости разгона модели с мотором, который, напротив, не способен похвастать хорошей мощностью, но превосходит конкурента в крутящем моменте. Чем большая тяга, сила передается ведущим колесам и чем богаче диапазон оборотов силовой установки, в котором достигается высокий КМ, тем быстрее происходит ускорение автомобиля.
В то же время существование крутящего момента возможно без мощности, но существование мощности без момента — нет. Представьте, что наша лошадь с санями увязла в грязи. Производимая лошадью мощность в этот момент будет равняться нулю, но крутящий момент (попытки выбраться, тяга), хотя его может быть недостаточно для движения, будет присутствовать.
Роль мощности и крутящего момента двигателя
Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.
Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:
- Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
- Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
- Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
- Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
- При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.
Вопрос — ответ
1. Автомобиль в глубокой колее сел на брюхо: ведущие колеса вертятся, не касаясь земли. Водитель упрямо газует. Какую полезную мощность может при этом выдать двигатель?
Б — в зависимости от оборотов;
Г — в зависимости от включенной передачи.
Правильный ответ: В. Автомобиль не движется, мотор не совершает полезной работы. Значит, и полезная мощность равна нулю.
2. Заднеприводный автомобиль с блокированным дифференциалом движется по плохой дороге. Как распределена мощность между ведущими колесами?
Б — обратно пропорционально частоте вращения каждого из колес;
В — в зависимости от сил сцепления с покрытием;
Г — прямо пропорционально частоте вращения каждого из колес.
Правильный ответ: В. При блокированном дифференциале ведущие колеса вращаются с одинаковой скоростью, но моменты на них не выравниваются — они зависят только от сцепления с дорогой. Следовательно, реализуемые колесами мощности тоже определяются силами сцепления с покрытием.
3. На что влияет мощность мотора?
А — на динамику разгона;
Б — на максимальную скорость;
В — на эластичность;
Г — на все перечисленные параметры.
Правильный ответ: Г. Часто полагают, что машину тащит исключительно крутящий момент. Но поставщиком крутящего момента является мотор. Если тот перестанет снабжать колеса энергией, то все динамические параметры будут равны нулю. Например, резко тронуться на повышенной передаче не удастся: при низких оборотах просто не хватит мощности. А она-то и определяет запас энергии, которую способен выдать двигатель. И влияет на все перечисленные параметры.
Расчетная мощность (определение)
Одним из основных этапов проектирования систем электроснабжения объекта является правильное определение ожидаемых (расчетных) электрических нагрузок как отдельных ЭП, так и узлов нагрузки на всех уровнях системы электроснабжения.
Расчетные значения нагрузок – это нагрузки, соответствующие такой неизменной токовой нагрузке (
), которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения.
Существуют различные методы определения расчетных электрических нагрузок, которые в свою очередь делятся на основные; и вспомогательные.
К расчётным электрическим нагрузкам относятся расчётные значения активной мощности (
), реактивной мощности (
), полной мощности ( ) и тока (
).
Режимы работы электродвигателей
Нагрузка на электродвигатель определяется режимом его работы. Она может оставаться неизменной или изменяться в зависимости от условий эксплуатации. При выборе двигателя обязательно учитывается характер и значение предполагаемой нагрузки. С учетом этого фактора выполняется расчет мощности электродвигателя.
Режимы, в которых работают электродвигатели:
- S1 – продолжительный режим. Нагрузка не меняется в течение всего периода эксплуатации. Температура двигателя достигает установленного значения.
- S2 – кратковременный режим. В этом случае в период работы температура не успевает достигнуть нужного значения. При отключении происходит охлаждение двигателя до температуры окружающей среды.
- S3 – периодически-кратковременный режим. В процессе работы двигателя производятся периодические отключения. В эти периоды температура двигателя не может достигнуть нужного значения или стать такой же, как в окружающей среде. При расчетах двигателя, в том числе и мощности, учитываются все паузы и потери, их продолжительность. Одним из важных критериев выбора агрегата, считается допустимое число включений за определенный отрезок времени.
- S4 – периодически-кратковременный режим с частыми пусками.
- S5 – периодически-кратковременный режим с электрическим торможением. Оба режима S4 и S5 работают также, как и S3.
- S6 – периодически-непрерывный режим с кратковременной нагрузкой. Эксплуатация двигателя осуществляется под нагрузкой, которая чередуется с холостым ходом.
- S7 – периодически-непрерывный режим с электрическим торможением.
- S8 – периодически-непрерывный режим, в котором одновременно изменяется нагрузка и частота вращения.
- S9–режим, когда нагрузка и частота вращения изменяются не периодически.
Одинаковый объем совсем не означает одинаковые двигатели
Мощность двигателей, в настоящее время характеризуется, как правило, их рабочим объемом, указываемым в литрах. Однако это не означает, что все двигатели объемом 3,8 литров одинаковы. Посмотрите, например, данные, приведенные в таблице.
Двигатель — Рабочий объем:
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра) производства компании Шевроле (Chevrolet) — 229 куб. дюймов
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра, также называемый двигателем 3800 сс) производства компании Бьюик (Buick) — 231 куб. дюйм
- 3.8-L V-6 (шестицилиндровый V-образный двигатель объемом 3,8 литра) производства компании Форд (Ford) — 232 куб. дюйма
Если точно пересчитать 3,8 литра (или 3800 куб. см) в кубические дюймы, то этот объем составит 231,9 куб. дюймов. В процессе округления объема двигателя, рассчитанного в кубических дюймах, а затем его перевода, также с округлением, в кубические сантиметры и литры, для совершенно разных двигателей получается один и тот же результат и, в результате, согласно маркировке они имеют одинаковый объем.
Во избежание путаницы и ошибок при заказе запчастей, при техническом обслуживании необходимо руководствоваться только . На всех автомобилях он должен быть виден через лобовое стекло. Начиная с 1980 г. идентификационный код двигателя (цифра или буква) указывается, как правило, в восьмой (если считать слева направо) позиции VIN-номера.
Двигатель 5.0-L V-8 (восьмицилиндровый V-образный двигатель объемом 5 литров) также вызывает путаницу у многих владельцев и автомехаников. Например, в некоторых моделях заднеприводных автомобилей компании General Motors может стоять двигатель 5.0-L V-8 (объемом 305 куб. дюймов) производства компании Шевроле. В тех же моделях может также стоять двигатель 5.0-L V-8 (объемом 307 куб. дюймов) производства компании Олдсмобил (Oldsmobile). Это разные двигатели и запчасти к ним не взаимозаменяемы! Компания Форд также поставляет двигатели 5.0-L V-8 (объемом 302 куб. дюйма). Эти двигатели, в зависимости от года выпуска, отличаются по таким главным характеристикам, как порядок работы цилиндров.
Маломощные, четырехцилиндровые двигатели также могут вызвать путаницу, поскольку многие производители автомобилей устанавливают двигатели, изготовленные как внутри страны, так и на зарубежных предприятиях. Чтобы безошибочно идентифицировать тип двигателя, всегда руководствуйтесь информацией, приведенной в сервисной документации.
Максимальная и номинальная мощность двигателей
В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства. Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.
Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.
Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.
Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент, и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и, значит, хуже будет косить густую траву.
Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов. На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.
Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому, покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором, вы можете получить двигатель реальной мощности 4-5 л.с. Но так как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную — завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.
Почему мощность двигателя измеряется в лошадиных силах?
Дела давно минувших дней, преданья старины глубокой. Был такой шотландский инженер, звали его Джеймс Уатт. Как и многие инженеры, он был ещё и изобретателем. И не простым, а таким, которые стремятся опередить время своими разработками. В начале 1780 -х годов (в одно время с нашим Иваном Кулибиным) изобрёл он экономичный паровой двигатель. Чтобы продать своё изобретение (и в те времена с внедрением их были небывалые трудности) он решил убедить людей в преимуществе своей машины над лошадьми. Сравнить машину с лошадью.
За основу он взял одну среднюю тягловую лошадь и приблизительно подсчитал, сколько энергии может вырабатывать типичная лошадь. Оценив затраты энергии лошади при вытаскивании из шахты бочку угля весом в один баррель, который весил 172,4 кг, он пришел к выводу что усилие средней лошади в течение 8 часов работы составляет 15% от её веса 500 кг или 75 килограмм-сил при массе лошади в 500 кг. Так появилась новая единица измерения — лошадиная сила, равная 75 кгс·м/с, то есть как мощность, затрачиваемая при равномерном вертикальном подъёме груза массой в 75 кг со скоростью 1 м/с.
В результате своих экспериментов Уатт убедился, что его машина куда производительнее лошадей. Об этом он и заявил покупателям.
Благодаря этому факту, введённая им единица измерения мощности двигателя стала популярной. В наши дни в системе СИ для вычисления мощности мы используем единицу Ватт, названный в честь Джеймса Уатта в 1882 году на Втором Конгрессе Британской Научной ассоциации (согласитесь, что легче и быстрее назвать изобретателя Джеймс Ватт, чем Джеймс Уатт). Ватт пришёл на смену лошадиной силе, но она жива в расчетах мощности автомобилей. 1 л.с. составляет 735,4985 Вт (1 кВт 1,3596 л.с.), эту величину называют «метрической лошадиной силой».
Лошадиная сила влияет и на транспортный налог автомобиля, чем больше мощность вашего автомобиля, тем больше Вам придется платить за его использование. Но это — другая история.
Источник