Принцип работы расходомера электромагнитного

Содержание:

Кольцевые весы

 

В качестве измерительного прибора для жидкостей и газов применяются кольцевые весы (рис. 144). Полное кольцо 1, свободно вращающееся на оси 2, проходящей через его центр, до половины заполнено жидкостью (маслом, водой или ртутью). В верхней части кольцо имеет перегородку 3, которая разделяет не заполненное жидкостью пространство на два отсека, каждый из которых при помощи гибких трубок 4 и соединительных трубок 5 приключается к месту измерения. 

В зависимости от разности давлений в отсеках жидкость, заполняющая кольцо, перемещается в сторону отсека с меньшим давлением до тех пор, пока разность уровней жидкости в обоих отсеках не уравновесит разности давлений. Вследствие нарушения равновесия кольца, вызванного перемещением жидкости, кольцо будет поворачиваться вокруг своей оси до тех пор, пока вращающий момент, возникший вследствие перемещений жидкости, не уравновесится моментом от груза 6, укрепленного в нижней части кольца. 

Таким образом, при установившейся разности давлений всегда имеется равновесие между моментом, создаваемым жидкостью с одной стороны, и моментом, создаваемым грузом 6, с отклонением на некоторый угол от вертикальной оси, — с другой. Кольцо кинематически связано со стрелкой 7, двигающейся вдоль вертикальной шкалы прибора 8. В зависимости от конструктивного оформления и способа включения прибор может служить манометром, вакуумметром, мановакуумметром или расходомером. 

При использовании прибора в качестве манометра пли мановакуумметра давление подводится к левой полости кольца, правая же— сообщается с атмосферой. При работе прибора в качестве тягомера (вакуумметра) правая полость сообщается с пространством, разрежение в котором измеряется, а левая — с атмосферой. При подаче в обе полости кольца двух различных сравниваемых давлений прибор работает как дифференциальный манометр и измеряет разности давлений. 

Подобное включение имеет место при использовании его в качестве расходомера, как это ‘показано на рис. 144, где прибор включен в сочетании с дисковой диафрагмой 9, помещенной в трубопроводе 10, расход по которому подлежит измерению. Ввиду того, что расход пропорционален корню квадратному из перепада давления в сужающем органе, то в расходомере кинематическая связь между кольцом и стрелкой выполнена так, что стрелка показывает величины, пропорциональные корню квадратному из разности давлений при равномерной разбивке шкалы. 

 

Монтаж ротаметра

Рассмотрим, как правильно установить чаще всего применяемый тип водомера — комбинированного с интегрированным в него клапаном. Прибор ставят строго вертикально: он просто вкручивается в посадочное место, на гребенку коллектора на подаче или обратке. Вариант прописывается в техдокументации и зависит от направления жидкости внутри. Коллектор уже стандартно имеет гнезда под резьбу ротаметров, часто продается уже с ними в сборе или в комплекте.

Дополнительные уплотняющие материалы не требуются, но если появилась течь, их можно применить. Стандартное изделие имеет накидную фиксирующую гайку и полипропиленовый уплотнитель-кольцо.

Традиционный внешний вид схемы узла такой: водомеры с вентилями на подающем сегменте, термостаты — на обратном (может быть наоборот).

На гребенке коллекторов многоконтурного оснащения есть посадочные места на каждый сегмент, то есть применяется большее количество водомеров, на каждый змеевик, который требуется настроить. Прибор фиксируется накидной гайкой, могут быть иные варианты крепления.

Если на насосно-смесительной части установлены термостаты, то также осуществляется регулировка дополнительная к водомерам: при достижении водой определенной t° на обратке коллектора активируется клапан, меняя зазор для хода воды.

Шкала колбы ротаметра показывает расход, она заполненная водой, уровень которой меняется в зависимости от интенсивности потребления. Там же есть поплавок, который и останавливается напротив соответствующего деления. Водомер сразу покажет значение, балансировка произведется на нем несколькими простыми движениями.

Отрегулировать теплый контур пола корректно можно, только если уровень жидкости в прозрачной мерной емкости со шкалой строго горизонтальный. Нужно особо следить, чтобы сам прибор был установлен ровно вертикально. Для этого установить коллектор с посадочными местами надо ровно с проверкой отвесом, пузырьковым, уровнем. Впрочем, если положение узла имеет отклонения, то система будет нормально работать, но при регулировке надо будет учитывать погрешности.

Метод Доплера

Счетчики, работающие по данному методу, измеряют разность длины волны, отраженной от движущегося потока, относительно длины волны излучаемого сигнала. Измерение принимаемого и передаваемого сигнала для определения разницы между ними производится при помощи клиновидных или трубных датчиков скорости, устанавливаемых на дне канала или трубы.

Работающие по эффекту Доплера водомеры используют в напорных и самотечных системах, полностью и частично заполненных трубах, открытых каналах. Они работают в потоках разной степени загрязнения (кроме чистой воды). Доплеровские расходомеры используют для коммерческого учета в трубопроводах и самотечных каналах, для измерения расходов в реках и каналах ирригационных систем, в ливневых канализациях, на насосных станциях, трубопроводах водозабора и сброса стоков в водоемы.

Кросс-корреляционные ультразвуковые счетчики

Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.

С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.

Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.

Детектор изменения скорости потока (датчики наличия расхода)

Часто требуется определение не количественных, а качественных характеристик потока жидкости или газа. К примеру, от устройства необходимо получать сигнал только в случае, если скорость потока отклоняется от номинальной. В данном случае чаще всего используются пороговые расходомеры на основе пьезоэффекта. В потоке устанавливается пара пьезокристаллов, включенных в электрическую цепь навстречу друг другу. Один из кристаллов изолирован от внешнего воздействия, второй находится непосредственно в потоке вещества (Рисунок 7).

Рисунок 7. Схема расположения ключевых элементов порогового
расходомера на пьезокристаллах

В случае если кристаллы находятся в одинаковых условиях, заряды на них имеют равную величину и разные знаки, напряжение на резисторе R равно нулю. Если же скорость потока изменяется, возникает изменение заряда на не изолированном кристалле, баланс зарядов нарушается, напряжение на резисторе изменяется — регистрация этого явления позволяет сделать вывод об отклонении скорости потока от номинального значения.

Приборы, в основу которых положен данный метод, как правило, могут быть использованы для анализа как жидких, так и газообразных сред.

Сенсоры

Основой для создания и передачи импульсов вихревого расходомера является сенсор. Эти устройства бывают следующих типов:

  1. Пьезоэлектрические или «крыло». Самый простой и надежный. Работает от вихревого давления. Образует аналоговые импульсы, которые преобразуются в цифровые, проходя через частотный усилитель.
  2. Пьезоэлектрические, пульсирующие. Схожие с выше описанными. Применяются для работы под высокой температурой.
  3. Ультразвуковые. Принцип работы подобных устройств основан на ультразвуковом прохождении через вихревой поток. Источник ультразвука монтируется напротив приемника. Звук с определенной частотой проходит через газовый вихрь и уже в преобразованном состоянии попадает на приемник. Устройство преобразует колебания в электрические импульсы и передает их на усилитель.

От сенсора зависит точность получаемых и преобразованных данных.

Скоростные (крыльчатые) расходомеры

Скоростные расходомеры (Вольтмана) (рис 145) применяются для труб диаметром от 50 до 200 мм. Водомер представляет собой цилиндрический корпус 1, в котором на оси в подшипниках с небольшим трением вращается турбинка (вертушка) 2. Число оборотов турбинки прямо пропорционально количеству протекающей воды. 

Вращение турбинки посредством червячного зацепления и зубчатого передаточного механизма передается счетчику, отмечающему количество воды, прошедшее через водомер. Для гидравлической характеристики скоростных водомеров введено условное понятие характерный расход, который представляет собой часовой расход воды в кубических метрах, при котором потеря напора в водомере равна 10 м вод. ст. 

При подборе скоростного водомера исходят из того, чтобы: а) временный максимальный расход был не более 50 % от характерного; б) наибольшая эксплуатационная нагрузка составляла 20—25% от характерного расхода; в) наименьший расход, обуславливаемый чувствительностью расходомера, был в пределах 2—5% от характерного. Потеря напора в скоростном расходомере определяется по формуле , где Q — расчетный расход в м3/час Qхар – характерный. 

 

При установке расходомера необходимо принимать во внимание то, что точность измерения расхода зависит от правильности установки расходомера. Для точной работы расходомера требуется, чтобы он был установлен расход в м3/час (принимается по таблице 18) на прямолинейном участке трубопровода длиной, равной 5—10 диаметрам от водомера и 3—5 диаметрам после расходомера

Расходомеры, снабженные струевыпрямителем, могут быть установлены в непосредственной близости к фасонным частям, но не ближе чем 0,5 м от задвижки и колен. Скоростные расходомеры можно устанавливать на горизонтальных и вертикальных участках трубопроводов с движением воды снизу вверх. Для выключения расходомера с целью его осмотра или ремонта по обе его стороны должны быть установлены задвижки. 

Для измерения расхода жидкости в трубопроводах больших диаметров (250 мм и более) применяются порциальные расходомеры с использованием обычных скоростных расходомеров. Принцип действия порциальных расходомеров основан на измерении не всего расхода, а лишь части его. При этом небольшой расходомер подключен к основному трубопроводу в обвод (шунт). 

 

На рис. 146 показана схема такого расходомера с диафрагмой, установленной на горизонтальном трубопроводе. Его работа основана на измерении скоростным водомером малого калибра расхода, от шунтированного от основного потока за счет перепада давления в диафрагме. Отшунтированный расход q пропорционален расходу Q в трубопроводе. Поэтому объем воды, проходящей по основному трубопроводу, можно определить умножением количества воды, замеренного скоростным водомером, на постоянный коэффициент. 

В случае, если на насосной станции отсутствуют стационарные расходомеры, кратковременные замеры расхода воды могут быть произведены при помощи переносного порциального расходомера. Конструкция такого расходомера разработана институтом Водгео.

Время-импульсные ультразвуковые счетчики

Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).

Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:

  • трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
  • клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
  • сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
  • штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
  • накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.

В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.

Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.

Выбор расходомера для водяного теплого пола

Качественные ротаметры должны сопровождаться гарантией на 5-7 лет стабильной работы. Рекомендуется выбирать расходомеры с латунным корпусом

Также следует обратить внимание на колбу, она должна быть выполнена из прозрачного стекла с хорошей видимостью шкалы водяного уровня. Однако есть мнение, что лучше выбирать изделия с мембраной из ударопрочного пластика

При выборе устройства нужно учитывать площадь системы трубопровода

Также важно автоматизирован узел или нет. В первом случае балансировка будет необходима крайне редко, механизированные коллекторы требуют более пристального внимания

Коллектор и расходомер, элементы оборудования

Ротаметр — это измерительный прибор, показывающий затраты теплоносителя, сколько его проходит через точку подсоединения за единицу времени.

Теплый пол с жидкостной системой состоит из следующих составляющих:

  • контур — трубки (петли, змеевик), по которым движется тёплая вода. Не обязательно, но желательно, чтобы протяженность змеевиков и методы их укладки были идентичными, что упростит балансировку;
  • клапаны подводки. Имеются в виду основные краны, которыми можно полностью перекрыть поток от источника;
  • насос. Горячая вода циркулирует благодаря ему;
  • коллектор, а точнее, коллекторная группа с расходомером. Именно данная часть является блоком управления, отвечает за распределение теплоносителя по контурам. На ней также установлены термостаты с клапанами, манометры.

Как видим, ротаметр устанавливается именно на коллекторе, и это логично, учитывая описанную нами выше схему, поскольку там возникает смешивание воды от котла и обратки, происходит ее распределение.

Пример температурной схемы:

Целеобразность установки коллекторной системы

Но устанавливать коллекторную отопительную систему в квартире старых многоэтажных домов нельзя, потому что там уже работает тройниковая отопительная система. Для работы коллекторной системы необходимо замкнуть гидравлическую цепь, что необходимо для создания циркуляции теплоносителя в системе. Если будет создана замкнутая гидравлическая цепь в одной квартире, то другие квартиры будут отрезаны от системы отопления.

Коллекторную отопительную систему также нельзя применять в районах с неустойчивым электроснабжением, так как при остановке циркуляционного насоса вода замерзнет, и трубы выйдут из строя. Но ситуацию может несколько исправить использование

Кориолисовы расходомеры

В основе действия – эффект Кориолиса: U-образные трубки подвергаются колебаниям при движении, а вибрационные колебания, в свою очередь, вызывают закручивание вещества. Величина сдвига фаз зависит от массового расхода жидкости или пара. Расход измеряется с учетом образуемого угла закручивания. Чаще всего такие расходомеры применяются для жидкостных сред, в том числе для красок, лаков, жидких полимеров.

Преимущества

  • Массовый расход измеряется напрямую.
  • Осадки или загрязнения, растворенные в жидкости, не влияют на результаты измерений.
  • Препятствий во внутреннем сечении нет, система работает стабильно.
  • Подходят для измерения всех типов жидкости, вне зависимости от их электрической проводимости.

Недостатки

  • Дороговизна, сложные технологические компоненты.
  • Необходимость высокоточного монтажа.
  • Точность проведения замеров может изменяться при сильных вибрациях.

Устройство и виды расходомера

Номинально расходомер для теплого пола предназначен для измерения расхода теплоносителя, то есть он фиксирует объем теплоносителя, который проходит через точку подключения в единицу времени. Этот измерительный прибор еще называют ротаметром.

В продаже имеются ротаметры разных моделей. Есть такие, что выполняют одну только функцию измерения. Для такого ротаметра дополнительно устанавливают перекрывной вентиль. Такой узел регулируется вручную. При настройке системы оператор прикрывает или приоткрывает вентиль в зависимости от показаний расходомера. Есть разнообразные модели с вмонтированным вентилем. Некоторые из них позволяют осуществлять автоматическое регулирование потока теплоносителя.

В системах теплых полов обычно используют поплавковые ротаметры. В металлическом или пластиковом корпусе находится прозрачная поликарбонатная колба. Скорость циркуляции теплоносителя определяется поплавком, находящимся внутри колбы. Принцип работы его основан на скорости всплывания поплавка в постоянно поступающей и топящей (обтекающей) его жидкости. Эту схему можно назвать вечно всплывающим поплавком. Пружина пытается вернуть поплавок на место. Чем сильнее поток, тем больше притапливается поплавок.

Поплавковый ротаметр вкручивается вертикально на подающем коллекторе. Классическая схема комплектации гребенки (коллекторов) – это расходомеры с вентилями на подающем коллекторе и термостаты на обратном.

Мембранный расходомер

Это одни из наиболее простых приборов измерения расхода. Принцип их работы основан на перемещении мембран измерительных камер по мере поступления в них газа. Впуск и выпуск газа вызывает движение стенок камер, что в свою очередь приводит в движение счетный механизм. Число сокращений и расширений камер при этом пропорционально объему проходящего через прибор газа.

Данные приборы обладают широким диапазоном и относительно недороги, однако из-за невысокой точности, неустойчивости к повышенному давлению и невозможности измерения больших расходов, они являются практически неприменимыми в промышленной сфере.

Расходомер РП

Рис. 10

Одним из популярных электромагнитных расходомеров является модель РП. Он выпускается в различных модификациях. На рис. 10 представлена структурная схема.

Равномерно по окружности трубы, с ориентировкой по радиусу, располагаются преобразователи скорости ПС. Они связаны с измерительными блоками ИБ, которые образуют первичный преобразователь скорости ППС. Каждый из трех комплектов формирует измеритель скорости ИС. Сигналы с трех преобразователей поступают в измерительно-вычислительный блок ИВБ-1П. Счетчик может работать на трубопроводах с ДУ до 5000 мм. Точность измерений составляет плюс-минус 1,5 – 2 %. Счетчик РП с одним преобразователем дает показания с точностью плюс-минус 2 – 3 %. Для установки ПС на трубу используются шлюзовые камеры, благодаря чему преобразователи скорости можно извлекать без перекрытия потока рабочей среды.

Для пищевой промышленности выпускаются расходомеры молока модели РП (рис. 11). Модификации рассчитаны на ДУ 25, 32 и 50 мм. Эти устройства предназначены для измерения расхода жидких продуктов с электропроводимостью от 0,001 до 10 См / м. Они применяются, как самостоятельно, так и в составе узлов учета УУМ-25/32/50.

Рис. 11

РП обеспечивает:

  • Определение объемного расхода рабочей среды, как разового, так и суммарного.

  • Ввод в память электронного блока значения плотности измеряемой жидкости.

  • Вычисление массового расхода, который соответствует объемному.

  • Отображение значений на ЖК дисплее.

Если трубопровод не заполнен жидкостью, расходомер автоматически отключается. Гидравлическое сопротивление отсутствует, энергопотребление низкое (до 10 Вт). Опционально прибор комплектуется преобразователем давления и термопреобразователем.

РП отличается большой точностью измерений и широким динамическим диапазоном (Gmax/Gmin = 50/1). Для этого прибора не требуются большие прямолинейные участки трубы до и после счетчика, достаточно длины от трех до пяти диаметров. Есть функция дозирования. Интерфейс RS-485 позволяет передавать сведения на ЭВМ, расположенную на удалении до 1 км., и объединять в сеть до нескольких десятков приборов.

Технические требования к счетчикам данного типа регламентирует ГОСТ 28723-90.

Электромагнитные молокомеры – это современные учетные приборы, использование которых в пищевой промышленности позволяет получить точные данные расхода и оперативно управлять исполнительными устройствами.

Применение в нефтяной и газовой отраслях

Важность нефтяной и газовой промышленности для отечественной экономики делает чрезвычайно актуальным вопрос измерения объемов их продукции. И счетчик кориолиса подходит для этого как нельзя лучше

Он может:

  • производить замеры массового расхода нефтяной и газовой среды на магистральных и технологических участках нефте- и газопроводов;
  • анализировать состав транспортируемой нефти на содержание в ней воды и газовых включений;
  • измерять концентрацию и чистоту нефти.

Кроме сырой нефти, преобразователь измеряет массовый расход продуктов ее переработки: бензина, керосина, дизтоплива, мазута и других жидкостей.

Принцип работы

Принцип работы, который заложен в массовый кориолисовый расходомер, заключается в фиксации изменений фаз механических колебаний в U-образных трубках, по которым движется измеряемая среда. Зная, что разность между фазами на входной и выходной частях расходомерной трубки прямо пропорциональна расходу измеряемого вещества в конкретный период времени, можно определить эту величину.

Сама же разность фаз возникает из-за появления кориолисовой силы, которую создает движущийся по расходомерным трубкам поток измеряемой массы. Кориолисова сила сопротивляется колебаниям трубок, препятствуя смещению массы на входе и, наоборот, способствуя на выходе из расходомерной трубки. Именно это и приводит к возникновению разности фаз сенсора. На простом примере это можно продемонстрировать с помощью извивающегося, под напором струи воды, садового шланга.

Возможные проблемы при использовании приборов учета стоков с погружными датчиками

Наиболее серьезной проблемой при использовании погружных датчиков является возможность потери ими работоспособности в результате загрязнения при работе в грязном канализационном стоке, либо разрушения при наличии в потоке перекатывающихся камней и других тяжелых предметов. При этом Водоканалы России особенно серьезно относятся к этой проблеме, потому что считают канализационные трубы в нашей стране самыми грязными. Но это не совсем так. Погружные датчики используются во всем мире, не только в хорошо ухоженных трубах Германии и Швейцарии, но и в Индии и в других странах, где канализация ничуть не чище отечественной.

Применяемые ультразвуковые датчики специально рассчитаны на тяжелые условия работы и не теряют работы при заиливании, так как мокрый ил хорошо пропускает ультразвука.

При покрытии датчиков слоем тряпок или материалом, непрозрачным для ультразвука, расходомеры ведущих производителей не дают неверных показаний, а сигнализируют об ошибке и необходимости прочистки. Для уменьшения вероятности засорения датчики обычно устанавливают не внизу (не на 6 часов), а с некоторым смещением (например, на 4 часа или 5 часов).

Применяют также установку на небольшом возвышении (на специальной подставке) и еще целый ряд методов для минимизации проблем, создаваемых грязью.

Для защиты от перекатывающихся камней и других твердых предметов, которые могут разбить корпус датчика, используют металлическую защиту специальной формы.

Еще одной проблемной задачей является измерение в потоках, имеющих в некоторые моменты времени низкий уровень. Это приводит к тому, что вода не покрывает датчик и не позволяет производить измерение скорости. Выше уже описывалась возможность перевода безнапорного потока в напорный за счет использования загнутой вверх трубы. Для поднятия уровня могут также использоваться небольшие плотины. При этом поток остается безнапорным, но уровень повышается.

Балансировка контура отопления

Дабы правильно сбалансировать кол-во подаваемого носителя тепла в контуры, выполняйте инструкции:

  1. Высчитайте общее кол-во носителя тепла в литрах, которое идет через коллектор с расходомерами для пола с подогревом в течении одной минуты. Результат который получился берите за 100%.
  2. Дальше найдите в процентах расход каждого отопительного кольца и переведите их в литры/мин.
  3. Дальше отрегулируйте краном на ротаметре подаваемое кол-во носителя тепла.
  4. Этими действиями вы сделаете предположительную балансировку контура отопления, итак, для того чтобы выставить фактические значения, нужно следить за показателями ротаметра, благодаря которым можно сделать подсчёт затрат подключённых к коллектору контуров.

Датчики расхода воздуха в промышленности

Промышленные расходомеры воздуха — это приборы для определения степени расхода рабочего вещества, в данном случае воздуха, газа, который проходит через трубопровод.

Виды

Расходомер сжатого воздуха в промышленности применяется почти во всех ее сферах, в частности: компрессорные установки в любых отраслях, производство, лаборатории, химическая и газовая отрасль, системы вентиляции.

В промышленности используются следующие типы расходомеров:

  • вихревые. Состоят из датчика из двух чувствительных частей: обтекаемого и пьезосенсора. Часть с этими деталями помещается внутрь трубопровода. Проходя через обтекаемое тело поток образует завихрения определенной формы и частоты, которые зависят от параметров воздуха. Пьезоэлемент реагирует на трансформации потока, подает сигнал на электронику, которая проводит расчет, выводит на дисплей количество пропущенного вещества;
  • ротаметрические. Это корпус со шкалой, около которой капсула внутри с поплавком-индикатором. Положение указателя зависит от объемного расхода газа;
  • тахометрические — крыльчатку крутит поток газа, скорость регистрируется электроникой, которая и вычисляет количество вещества;
  • кориолисовы. Колебания Трубки в форме буквы U вызывают закручивание газ, величина сдвига фаз зависит от его расхода, который и измеряется по углу завихрений. Чаще применяются для жидкостей;
  • измерители перепадов давления. Поток проходит через сужающуюся шайбу, трубку, сопло при этом измеряется давление, которое возрастает/понижается в зависимости от интенсивности движения вещества.
  • ультразвуковые. Измеряется УЗ волна, пропускаемая через среду;
  • калориметрические. Расходомер сжатого воздуха работает по следующему принципу: поток нагревается внешними источниками, при движении датчики фиксируют изменение t°.

Промышленный расходомер также может измерять температуру, объемный расход в м. куб за мин., скорость потока. Используются механические и цифровые (пленочные, проволочные термоанемометр, пьезопленочный элемент) варианты изделий, принцип которых аналогичный автомобильным. Устройства устанавливаются на втягивающем тракте.

Пример характеристик модели ЕЕ 75:

Решение проблемы с контурами теплого пола

Подключая контуры напольного обогрева к одной коллекторной группе, вы можете сбалансировать их двумя способами:

  1. Первый способ предполагает собой создание ровных колец, однако укладывать их можно несколько штук в одну комнату, например, в ванную вы можете положить одно отопительное кольцо, в гостиную три, а в кухню два. Таким образом, нагрев всех колец будет одинаковым.
  2. Если вы не хотите создавать несколько колец в одной комнате, то для вас также есть решение. Отопительные контуры могут быть разной длины, однако их стоит подключать через специальное устройство – расходомер для теплого пола. Расходомер или ротаметр – это совокупность балансировочных кранов, ограничивающих количество выпускаемого в систему теплоносителя. Пример ротаметра вы можете увидеть на фото.

Ультразвуковые расходомеры

Расходомеры этого типа дополнены передатчиками УЗ-сигналов. Скорость прохождения сигнала от передатчика до приемника будет меняться каждый раз при движении жидкости. Если ультразвуковой сигнал идет по направления потока, то время уменьшается, если против – увеличивается. По разности времени прохождения сигнала по потоку и против него и рассчитывается объемный расход жидкости. Как правило, такие устройства комплектуются аналоговым выходом и микропроцессорным блоком управления, а все отображаемые данные выводятся на LED-дисплей.

Достоинства ультразвуковых расходомеров

  • Устойчивость к вибрациям и ударам.
  • Стабильный долговечный корпус.
  • Подходят для нефтеперерабатывающей промышленности и систем охлаждения.
  • Выполняют замеры расхода воды и жидкостей, подобных воде по физическим свойствам.
  • Работают в среднем динамическом диапазоне измерений.
  • Могут монтироваться на трубопроводы больших диаметров.

Недостатки

  • Повышенная чувствительность к вибрациям.
  • Восприимчивость к осадкам, поглощающим либо отражающим ультразвук.
  • Чувствительность к перекосам потока.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector