Планетарная передача: может ли без неё классическая коробка автомат?
Содержание:
- Достоинства и недостатки планетарных передач
- Управляющие элементы планетарной передачи
- Планетарный механизм: назначение и устройство
- Внутренняя конструкция
- Типы планетарных редукторов и их применение [ править | править код ]
- Применение
- Переключение передач в планетарной коробке
- Планетарный механизм: назначение и устройство
- Советы по подбору планетарного редуктора
- [править] Устройство
Достоинства и недостатки планетарных передач
Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.
Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.
За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.
Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.
Недостатки планетарного механизма:
- сложное производство и высокая точность сборки;
- в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
- при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.
Читать
Зачем нужна нейтралка на АКПП, переключение и движение накатом на автомате
Управляющие элементы планетарной передачи
Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются ввиду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.
Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.
Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционнных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.
Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.
Планетарный механизм: назначение и устройство
В устройстве трансмиссии планетарный механизм позволяет изменять скорость, а также при необходимости направление вращения выходного вала. При этом в работе механизма можно выделить зависимость, что чем ниже будет скорость вращения выходного вала, тем большим будет на нем крутящий момент.
Итак, планетарная передача в основе имеет несколько вращающихся шестерен. Шестерни бывают следующих видов:
- солнечная шестерня;
- коронная шестерня
- сателлиты;
Само свое название планетарный механизм получил благодаря особенности размещения шестерен (подобно планетам вокруг солнца). Схема устройства предполагает, что в центре расположена солнечная шестерня, вокруг которой вращаются сателлиты. Сателлиты связаны между собой водилом, снаружи сателлитов установлена коронная шестерня. Указанные виды шестерен связаны с входным или выходным валом.
Общий принцип работы планетарной передачи состоит в том, чтобы одна из шестерен (солнечная, коронная или водило) имела жесткую фиксацию. В этом случае элемент становится передающим.
В качестве примера можно представить, если закреплена коронная шестерня, тогда входной вал передает крутящий момент на солнечную шестерню. От солнечной шестерни идет передача момента дальше на сателлиты. Сателлиты проходят по коронной шестерне и вращают водило.
Водило, в свою очередь, передает крутящий момент на выходной вал коробки. По такому принципу построена планетарная коробка передач, куда также включены специальные системы торможения (тормоза) и блокировки элементов планетарного механизма.
С учетом особенностей конструкции можно выделить два типа планетарных передач:
- в первом типе блокируется только один тип шестерен (одноступенчатая планетарная передача);
- во втором возможна блокировка разных видов шестерен (многоступенчатая планетарка);
Также планетарный ряд может быть как с закрепленным элементом, так и с дифференциальным. Во втором случае ни один из элементов не зафиксирован жестко, что позволяет изменять вращение отдельно (посредством усилий, которые прикладываются к валам). Данный механизм позволяет вращаться наименее нагруженному валу с наибольшей скоростью.
Статья в тему: Распредвал
Где используется планетарный механизм в автомобиле
Начнем с того, что планетарная передача используется в устройстве различных типов техники. Что касается автоиндустрии, чаще всего планетарный механизм лежит в основе дифференциала автомобиля.
Дифференциал стоит на каждой ведущей оси. Именно в дифференциале использован такой тип планетарной передачи, где ни один из элементов не имеет жесткой фиксации. Через входной вал момент передается на шестерню (не коронную, так как зубья расположены не вниз, а по сторонам). Шестерня передает момент на сателлиты, к которым присоединены 2 солнечные шестерни.
Принцип работы таков, что сателлиты вращаются с одинаковой скоростью, однако солнечные шестерни могут иметь разную скорость вращения, причем отличную друг от друга. Однако если сложить скорости, сумма всегда является одинаковой.
Идем далее. Планетарная передача также лежит в основе гидромеханической планетарной коробки передач АКПП. Если просто, общий принцип работы также основывается на вращении трех типов шестерен. При этом устройство намного сложнее, так как современная коробка передач требует от 5-и до 6-и передач для движения вперед. Вполне очевидно, что на одном планетарном механизме невозможно реализовать такую задачу.
В устройстве современной трансмиссии инженеры используют целый планетарный ряд АКПП. Планетарные ряды фактически являются связанными между собой несколькими планетарными механизмами. Благодаря такой конструкции можно гибко реализовать диапазон передаточного соотношения от 0.7:1 (для повышенных передач) и 4.5:1 (на пониженных). Передаточное соотношение, например, 0.7:1, означает, что на один оборот выходного вала входной вал делает 0.7 оборота.
Также в устройстве АКПП имеются специальные тормозные механизмы, которые нужны для переключения передач. Указанные механизмы (тормоза АКПП) имеют возможность притормозить вращение шестерен, а также полностью их заблокировать для подключения других элементов.
Внутренняя конструкция
Мы взяли Pinion P1.18 как самую сложную коробку из всей линейки Pinion. В остальных коробках всё так же, только с меньшим количеством зубчатых шестерней.
Сравните P1.18 и P1.9
Как видно внутри банально уменьшили количество пар шестерней и изменили размеры некоторых из них для более ровного разброса между передачами.
Но перейдем ко внутренней конструкции. Вот вам небольшая схемка, благодаря которой будет гораздо проще ориентироваться в строении коробки:
- Зелёной стрелкой отмечен первичный вал, на него усилия передаются с ваших педалей.
- Красной стрелкой отмечен вторичный вал, внутри него творится вся магия.
- Зеленый прямоугольник показывает 6 зубчатых шестерней, жестко зафиксированных на первичном валу.
- Красный прямоугольник показывает 3 зубчатых шестерни, через которые насквозь проходит первичный вал. Никакой сцепки между ними и валом нет, а фиксируются они в самом корпусе коробки через промподшипник. С этими шестернями в жесткой сцепке находится ведущая звезда, передающая момент вращения на заднее колесо велосипеда (на схеме отсутствует).
- Фиолетовый прямоугольник указывает на 6 шестерней, благодаря которым вращение передаётся от первичного (зеленого) вала ко вторичному (красному) валу.
- Оранжевый прямоугольник указывает на 3 шестерни, через которые вращение от вторичного (красного) вала передаётся на 3 шестерни (выделены красным прямоугольником) и ведущую звезду соответственно.
Пока ещё выглядит мутно, но сейчас мы проясним картину. На вторичном (красном) валу у вас есть 3 оранжевых шестерни и 6 фиолетовых шестерней. Методика выбора передач примерно такая же, как и в классическом цепном приводе с кассетой. 3 оранжевых шестерни эквивалентны 3-м звёздам на шатунах спереди, а 6 фиолетовых шестерней эквивалентны 6-ти звёздам в кассете на заднем колесе. Дальше простая арифметика, 3*6 = 18 скоростей. Отличие лишь в том, что 2 соседние фиолетовые шестерни отвечают не за соседние передачи, как с кассетой, а оптимизированы по размеру, поэтому разбросаны по валу. Это сделано, чтобы добиться компактности механизма в целом.
И самой главной деталью, которая делает всю эту «магию» с выбором передачи внутри коробки Pinion является такой-себе «храповик» вторичного вала. На фото ниже вы видите вторичный вал в сборе, сам «храповик» в сборе и разобранный храповик с «собачками» и «распредвалом» (находятся не в фокусе).
В статье на Pinkbike.com, где у авторов Pinion брали интервью, по поводу устройства храповика пошутили, мол «Если вы понимаете, как он устроен, то возможно вам стоит обратиться к ребятам из Pinion и они возьмут вас к себе на работу».
Переключая передачи, внутри корпуса храповика вы вращаете небольшой «распредвал» (тот самый, что был не в фокусе), который выталкивает определенные собачки для фиксации определенных шестерней. На фото ниже видно 3 отверстия под собачки, а шестеренок у на валу нас 9, следовательно 9 собачек во всей тушке храповика. Собачки равномерно распределены по корпусу храповика, угол между двумя соседними собачками составляет 120о.
Дальше принцип, как и в обычной втулке. Эти собачки дополнительно подпружинены, чтобы работал сам храповой механизм, а на шестернях вторичного (красного) вала присутствуют пазы для собачек, в которые собачки упираются, когда вы вращаете педали.
Переключая скорость, вы активируете 2 собачки. Одна из «оранжевой» группы, вторая из «фиолетовой». Остальные шестерни со вторичного вала свободно вращаются вокруг него, ничем не фиксируясь (если бы было иначе, то вращения бы не происходило). Вот в принципе и вся хитрость коробки передач.
Возможно, кому-то покажется, что одной собачки на 1 шестерню маловато, но размер у них приличный, да и нагрузки получаются не такими, как в классической конструкции с барабаном.
На видео работа выглядит весьма завораживающе, конечно в реальных условиях этого не видно, всё скрывает кожух:
Типы планетарных редукторов и их применение [ править | править код ]
Планетарный редуктор с одной степенью свободы
Конструкция таковых предполагает, что опорное звено всегда постоянно заблокированно на корпус редуктора. При этом для любого простого (трёхзвенного) планетарного механизма возможны шесть вариантов распределения ролей между основными звеньями, каждый из которых даёт своё передаточное отношение. Из этих шести передаточных отношений три могут применяться для редукции (передаточное отношение больше единицы) и три для мультипликации (передаточное отношение меньше единицы). Выбор того или иного варианта обусловлен необходимой кинематикой соединения с соседними элементами трансмиссии и нужным значением передаточного отношения, которое в разных вариантах может отличаться в разы.
Для планетарного редуктора, выполненного на основе простого планетарного механизма схемы СВЭ , на практике возможны следующие варианты:
- Вариант 1 : ведущее звено — солнце; ведомое звено — водило; опорное звено — эпицикл.
- Вариант 2 : ведущее звено — водило; ведомое звено — солнце; опорное звено — эпицикл.
- Вариант 3 : ведущее звено — эпицикл; ведомое звено — водило; опорное звено — солнце.
- Вариант 4 : ведущее звено — водило; ведомое звено — эпицикл; опорное звено — солнце.
- Вариант 5 : ведущее звено — солнце; ведомое звено — эпицикл; опорное звено — водило.
- Вариант 6 : ведущее звено — эпицикл; ведомое звено — солнце; опорное звено — водило.
Читать также: Бумага наждачная нулевка какая зернистость
Наиболее глубокую редукцию в схеме СВЭ даёт Вариант 1 (с солнца на водило)
, наиболее слабую —Вариант 3 (с эпицикла на водило) . Некое промежуточное значение редукции с обязательным противовращением даётВариант 5 (с солнца на эпицикл) , но в силу разных причин его используют не часто (единственный известный пример — колёсные редукторы дорожных автомобилей МАЗ). Оставшиеся три варианта дают мультипликацию, в том числе одно передаточное отношение обратного вращения.
Планетарные редукторы с одной степенью свободы применяются в бортовых главных передачах гусеничных машин, в двухступенчатых главных передачах колёсных грузовых машин в ступицах ведущих колёс, в грузовых лебёдках и тельферах, в автомобильных стартёрах, в совмещённых планетарных мотор-редукторах. Общий принцип применения — требование компактности редуктора и соосности ведущего и ведомого валов. В грузовых лебёдках и тельферах могут применяться двух- и трёхрядные планетарные передачи, а общее передаточное отношение таких планетарных редукторов может быть порядка 100.
Планетарная передача – механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно, планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую шестерню, имеющую внутреннее зацепление с планетарными шестернями.
Применение
Планетарный редуктор Наиболее широкое применение принцип нашёл в планетарных редукторах, автомобильных дифференциалах, бортовых планетарных передачах ведущих мостов тяжёлых автомобилей, кроме того, используется в суммирующих звеньях кинематических схем металлорежущих станков, также в редукторах привода воздушных винтов турбовинтовых двигателей (ТВД) в авиации, также довольно распространены планетарные втулки для велосипедов.
В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.
Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила. Широко применяется данная схема в авиации: в приводе постоянных оборотов электрогенератора планетарный механизм используется для сложения двух различных входных частот вращения с целью получения стабильной выходной. В авиационных электро- и гидроприводах для надёжности используются два мотора, работающие на общий выходной вал через планетарный редуктор, и при отказе одного мотора или цепи управления им работоспособность привода сохраняется, но с двойным уменьшением частоты вращения.
Планетарные передачи также используются в случаях, когда необходимо переменное передаточное отношение (может быть достигнуто торможением, например, водила).
Планетарный механизм поворота
ПМП применяются на гусеничных тракторах и танках для изменения скорости и поворота. В этом случае в трансмиссии к левому и правому ведущим колёсам устанавливается свой планетарный редуктор, коронная шестерня которого приводится от двигателя, с водила передаётся момент на колесо, а солнечная шестерня связана с тормозом той или иной конструкции (как правило, ленточным). Также между коронной шестернёй и выходным валом установлен так называемый блокировочный фрикцион, а на выходном валу (от водила) — ещё один тормоз.
Если тормоз солнечной шестерни и фрикцион выключены, то момент на ведущее колесо трактора не передаётся — корона через сателлиты вращает расторможенную солнечную шестерню, практически не создавая момента на водиле. Для исключения движения трактора в этом случае может быть заторможен основной тормоз (на выходном валу). Если начать затормаживать солнечную шестерню, то сателлиты получат точку опоры и начнут создавать момент на водиле, вращая ведущее колесо трактора. При полностью заторможенной солнечной шестерне ПМП работает как обычный понижающий редуктор. Это первая передача ПМП. При включении блокировочного фрикциона он начнёт передавать момент от двигателя напрямую на водило, минуя редуктор, и при полном включении фрикциона редуктор ПМП будет полностью выведен из работы (заблокирован) — это вторая передача ПМП, работа в качестве прямой передачи.
Таким образом, включение тормоза водила даёт остановку трактора, включение тормоза солнечной шестерни — первую (понижающую) передачу, включение блокировочного фрикциона — вторую.
Переключение передач в планетарной коробке
В планетарной коробке передач одни детали блока планетарных шестерен удерживаются на месте, другие с геометрическим замыканием (жестко) соединены с валом турбины гидротрансформатора крутящего момента (выполняющим роль первичного вала механической планетарной передачи).
Удержание обеспечивается за счет тормозов, а соединение с геометрическим замыканием — за счет соединения многодисковых муфт.
Тормоза и многодисковые муфты в автоматической коробке передач носят общее название органы переключения или элементы переключения передач. Управление ими всегда осуществляется с помощью гидравлического давления.
Тормоза
При включении или затягивании тормозов в рамках переключения передачи солнечные шестерни, водило планетарной передачи или коронные шестерни блокируются (останавливаются), а при выключении или отпускании тормозов снова разблокируются и начинают движение,
В планетарных передачах могут использоваться ленточные или дисковые тормоза.
Ленточные тормоза
По окружности тормозного барабана расположена тормозная лента, имеющая с внутренней стороны фрикционную накладку.
У ленточного тормоза с одинарной обвивкой тормозной лентой тормозная лента обвита вокруг тормозного барабана один раз, а у ленточного тормоза с двойной обвивкой тормозной лентой — два раза, благодаря чему усилие фиксации тормозного барабана при стягивании тормозной ленты в два раза выше, чем у ленточного тормоза с одинарной обвивкой. Ленточный тормоз автоматической коробки передач Opel имеет двойную обвивку тормозной лентой. На рис. 21 «Ленточный тормоз с гидравлическим приводом механизма переключения передач автоматической коробки» изображен ленточный тормоз с одинарной обвивкой тормозной лентой.
Дисковые тормоза
В современных автоматических коробках передач используются только дисковые тормоза. На рис. 22 изображены основные детали дискового тормоза. Стальные диски (2) с наружными захватами вложены в стальную обойму (1) и имеют возможность перемещения в осевом направлении, фрикционные диски (3) с накладками соединены с блоком планетарных шестерен с помощью внутреннего зубчатого венца. Стальная обойма жестко соединена с картером коробки передач (в ZF и Opel такой дисковый тормоз получил название «неподвижной муфты»). По сравнению с ленточными тормозами дисковые тормоза могут передавать более высокие крутящие моменты и более точно регулироваться в отношении передачи усилия.
Муфты
Муфты автоматической коробки передач выполняют следующие функции:
- Соединение вала турбины (первичный вал коробки передач) с определенными частями блока планетарных шестерен и отсоединение от них;
- Передача усилия от частей одного блока планетарных шестерен на части другого.
При установлении соединения с жестким геометрическим замыканием говорят, что муфта включается или соединяется. При разъединении соединения с геометрическим замыканием говорят, что муфта выключается или разъединяется.
Как и дисковый тормоз (рис. 22) дисковая муфта состоит из стальных дисков с наружными захватами и фрикционных дисков с накладками и внутренним зубчатым венцом.
На рисунках 23 и 24 схематически изображена муфта переднего хода автоматической коробки передач Audi и VW.
Название муфта переднего хода говорит о том, что эта муфта включается на всех передачах переднего хода. Только в нейтральном положении и на передаче заднего хода муфта разъединена.
Под системой автоматического переключения понимается гидравлический привод тормозов и муфт. Для затягивания и быстрого отпускания ленточных тормозов используются круглые поршни в соответствующих цилиндрах (см. рисунок 21).
Для обеспечения соединения дисковых тормозов и муфт поршни выполнены в виде колец, как показано на рисунках 23 и 24. Отпускание тормозов и разъединение муфт выполняется с помощью тарельчатых или спиральных пружин или с помощью нескольких небольших круглых витых пружин, расположенных по окружности муфты.
РЕКОМЕНДУЮ ЕЩЕ ПОЧИТАТЬ:
Планетарный механизм: назначение и устройство
Устройство планетарного механизма представляет собой конструкцию из нескольких зубчатых колес, минимальное количество которых равняется четырем.
Как минимум, два из них обладают общей неподвижной осью вращения, а оси оставшихся вращаются вокруг нее. Последние крепятся к так называемому водилу, благодаря чему формируется механическая система с двумя или большим количеством степеней свободы.
Три основные звена
Основными конструктивными элементами планетарной КПП выступают: два центральных колеса, одно малое с наружными зубцами, а второе – большое с внутренними. Первое называют солнцем (солнечным), второе – эпициклом или коронным. Характерной особенностью работы планетарного механизма выступает отсутствие непосредственного контакта между ними.
Третьим обязательным элементом становится уже упомянутое выше водило. Деталь представляет собой рычажный механизм, к которому крепятся планетарные шестерни, которые заслуживают отдельного описания.
Планетарные шестерни
Другое их название – сателлиты. Они также представляются собой зубчатые колеса с внешними зубьями. Планетарные шестерни выступают связующим звеном между солнцем и эпициклом. Их минимальное количество равняется двум в самых простых системах.
В более сложных нередко используются группы зубчатых колес, что делает эффективность КПП заметно выше. Общая схема сравнительно простой однорядной планетарной передачи показана с обозначением основных элементов показана на скриншоте.
Еще одна классификация осуществляется по типу передачи. В этом случае различают три вида:
- Понижающая. Работает по двум вариантам. Первый предусматривает блокировку эпицикла с подачей вращения на вал солнца. Крутящий момент снимается с водила, частота вращения которого ниже аналогичного показателя солнечного зубчатого колеса. Аналогичный эффект достигается и вторым способом: подача вращения на эпицикл и блокировкой солнца с одновременным снятием крутящего момента с водила.
- Повышающая. Также функционирует по двум вариантам. Первый: блокировка эпицикла, подача вращения на водило и сателлиты, снятие крутящего момента с солнца. Второй: солнце блокируется, вращение снова подается на водило с сателлитами, но снимается с большого зубчатого колеса.
- Задняя. Работает аналогичным образом, то есть по двум схемам. Первая: подача вращения на солнце, снятие с эпицикла, а водило блокируется. Второй: подача крутящего момента на эпицикл, снятие вращения с солнца, водило остается заблокированным.
Советы по подбору планетарного редуктора
Перед выбором планетарного редуктора проводят точный расчёт нагружения и режимов работы механизма. Определяют тип передачи, осевые нагрузки, температурный диапазон и типоразмеры редуктора. Для тяжёлой спецтехники, где нужен большой крутящий момент при малых скоростях, выбирают редуктор с высоким передаточным отношением.
Чтобы сбавить угловую скорость, не снижая крутящего момента, применяют привод с электродвигателем и редуктором. При выборе мотор редуктора учитывают:
- эксплуатационную нагрузку;
- момент вала на выходе;
- частоту вращения входного и выходного валов;
- мощность электродвигателя;
- монтажное исполнение.
[править] Устройство
Планетарная передача
Основные элементы планетарной передачи:
- Солнечная шестерня (англ.sun gear ) — находится в центре.
- Водило (англ.carrier unit ) — жёстко фиксирует друг относительно друга оси несколькихпланетарных шестерён («сателлитов») одинакового размера (англ.planetary gears ), находящихся в зацеплении с солнечной шестерней.
- Кольцевая шестерня (англ.ring gear ) — внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.
При использовании планетарной передачи в качестве редуктора один из элементов фиксируется неподвижно, второй — используется как ведущий (замыкается на звезду, приводимую цепью), а третий — в качестве ведомого (замыкается на корпус втулки). Соединение элементов осуществляется с помощью собачек или роллерного сцепления, уменьшающего шумность. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также того, какой элемент закреплён. Увеличивая количество планетарных передач, можно увеличивать количество скоростей у втулки.
3-скоростная втулка
Взрыв-схема 3-скоростной планетарной втулки (вид сзади): 3 — водило с сателлитами, 4 — кольцевая шестерня, 6 — ось и солнечная шестерня, 7 — привод с шлицами для звездочки
Принцип работы 3-скоростной планетарной втулки, включающей в себя одну планетарную передачу:
- Солнечная шестерня — это ось, она закреплена неподвижно на раме.
- Первая передача (отношение 0.733). Ведомая звезда с помощью привода соединена собачками с кольцевой шестерней. Водило соединено собачками с корпусом втулки. Кольцевая шестерня вращает водило через сателлиты, при этом водило (и корпус втулки) вращается медленнее, чем кольцевая шестерня (и звезда).
- Вторая передача (отношение 1.0). Под действием исполнительного механизма муфта, сжимая возвратную пружину, выдвигает собачки на кольцевой шестерне, и она зацепляется с корпусом втулки. Вращение передается непосредственно с звезды на кольцевую шестерню и далее на корпус втулки — прямая передача. Водило вращается с той же скоростью, что и на первой передаче, но корпус втулки вращается быстрее, поэтому собачки водила стрекочут по корпусу и не оказывают влияния на работу механизма.
- Третья передача (отношение 1.364). Исполнительный механизм толкает муфту дальше, она входит своими шлицами в зацепление с водилом. Тем самым, водило соединяется с ведомой звездой. Собачки на кольцевой шестерне по-прежнему зацеплены с корпусом втулки, но водило теперь вращается в противоположную сторону, ускоряя вращение корпуса втулки по сравнению с ведомой звездой. Собачки стрекочут между водилом и корпусом, а также между приводом и кольцевой шестерней.
Многоскоростные втулки
Взрыв-схема 8-скоростной планетарной втулки (вид сзади): 3 — сдвоенная планетарная передача в сборе, 4 — водило в сборе, 5 — кольцевая шестерня, 8 — ось и солнечная шестерня в сборе, 9 — муфта, 10 — возвратная пружина, 11 — привод с шлицами для звездочки
При увеличении количества планетарных передач, включаемых в различных сочетаниях, можно увеличивать число передаточных отношений втулки (с соответствующим увеличением сложности и цены).
8-скоростная втулка имеет две планетарных передачи. Первая из них (подключается муфтой на 1-4 скоростях) — замедляет вращение втулки на фиксированную величину. Она состоит из 1 кольцевой шестерни, 1 солнечной шестерни и 1 набора сателлитов. Вторая планетарная передача ускоряет движение втулки. Она состоит из 1 кольцевой шестерни, 3 солнечных шестерней (далее — СШ № 2, 3, 4) и 3 наборов сателлитов. При переключении передач, различные солнечные шестерни подключаются собачками, расположенными на оси, и меняют передаточное отношение второй планетарной передачи. 5-я передача втулки — прямая, вращение передается с звездочки на корпус без преобразования потока мощности.
Использование планетарных передач (далее — ПП1 и ПП2) втулки на различных скоростях:
- ПП1 замедляет, ПП2 не используется.
- ПП1 замедляет, ПП2 ускоряет с СШ2.
- ПП1 замедляет, ПП2 ускоряет с СШ3.
- ПП1 замедляет, ПП2 ускоряет с СШ4.
- Прямая передача
- ПП1 не используется, ПП2 ускоряет с СШ2.
- ПП1 не используется, ПП2 ускоряет с СШ3.
- ПП1 не используется, ПП2 ускоряет с СШ4.
Взрыв-схема 11-скоростной планетарной втулки (вид сзади): 7 — водило № 3 в сборе, 8 — солнечная шестерня № 4, 10 — водило № 2 в сборе, 11 — солнечная шестерня № 2, 12 — водило № 1 в сборе, 14 — ось и солнечная шестерня № 1 в сборе, 15 — муфта, 17 — привод с шлицами для звёздочки
юбилей Sturmey-Archer
11-скоростная втулка имеет уже 3 планетарных передачи. Она не имеет прямой передачи, поток мощности преобразуется минимум 1 раз на всех передачах.