«короткая» и «длинная» коробка передач. что лучше?
Содержание:
- Практический способ определения
- Передаточное число: какое влияние оказывает?
- Как рассчитать передаточное число
- Как рассчитать передаточное число
- Определение передаточного числа главной передачи.
- Передаточные числа КПП
- Исходные данные и замеры
- Общее определение
- ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ РЕДУКТОРА К РАСПРЕДЕЛЕНИЕ ЕГО ПО СТУПНЯМ
- Передаточное отношение и число зубьев зубчатой передачи
- Специфика эксплуатации редуктора заднего моста
Практический способ определения
Самый точный способ определения передаточного числа заключается в подсчете числа зубцов ведущей и ведомых шестерен. Затем большее число делится на меньшее, что и даёт нужный результат. К примеру, в отечественной модели ВАЗ-2106, количество зубьев ведущего вала — 41, а количество зубьев ведомой шестерни дифференциала — 11. В итоге, поделив одну цифру на другую, получаем: 41 : 11 = 3,9.
Такой способ определения самый точный, но при этом совсем не практичный. Потому что для этого варианта необходимо разобрать редуктор и достать необходимые детали. А это не просто неудобно, это всегда затратно.
Передаточное число: какое влияние оказывает?
Передаточное число — это параметр, который можно просчитать самостоятельно. Величина его вычисляется путем деления количества зубьев ведомой шестерни на количество ведущей. При этом чем большее значение передаточного числа, тем более стремительно силовой агрегат может накрутить нужное количество оборотов. То есть при большом передаточном числе автомобиль гораздо быстрее набирает разгон. Однако здесь есть один немаловажный нюанс, максимум скорости в таком случае будет меньшим, а переключение передач придется выполнять намного чаще. Именно по этой причине большинство автопроизводителей считают приемлемым значение параметра в среднем диапазоне и создают коробки передач многоступенчатой конструкции.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.
Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:
Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.
Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.
КПД зубчатой передачи
Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:
- трение соприкасаемых поверхностей;
- изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
- потери на шпонках и шлицах;
- трение в подшипниках.
Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.
Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.
При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.
Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Определение передаточного числа главной передачи.
Передаточное число главной передачи находят исходя из максимальной скорости автомобиля на высшей передаче, заданной техническими условиями на проектируемый автомобиль.
Значение передаточного числа главной передачи определяют по формуле
Ur=3,6(wmaxrk)/VmaxUkUд
где vmax — максимальная скорость автомобиля, км/ч; wmах — максимальная угловая скорость коленчатого вала, рад/с; rk — радиус колеса, м; Uk — передаточное число коробки передач на высшей передаче; ид — передаточное число дополнительной коробки передач на высшей передаче (ид = 1).
Полагают, что передаточные числа коробки передач на высшей передаче имеют следующие значения: ик= 1,0 — для прямой передачи и ик = 0,9…1,0 — для повышающей передачи легковых автомобилей; ик — 1,0 — для грузовых автомобилей с числом передач не более шести; ик = 0,7…0,8 — для многоступенчатых коробок передач грузовых автомобилей.
Найденное расчетным путем передаточное число главной передачи UТ должно иметь следующие значения: не более 5,0 — у легковых автомобилей; не более 7,0 — у грузовых автомобилей грузоподъемностью до 8 т; не более 8,0 — у грузовых автомобилей грузоподъемностью свыше 8 т.
Расчетное значение передаточного числа главной передачи необходимо сравнить с существующими передаточными числами главных передач автомобилей аналогичного типа и назначения. В том случае, если у новой модели автомобиля проектируется ведущий мост, то это значение передаточного числа уточняют с учетом числа зубьев шестерен главной передачи.
Определение передаточного числа первой передачи коробки передач. Определение передаточных чисел промежуточных ступеней коробки передач.
При определении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максимального сопротивления дороги. Промежуточные передачи коробки передач используются при разгоне автомобиля, преодолении повышенного сопротивления движению, работе автомобиля в условиях, не позволяющих двигаться с высокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.
При расчете передаточных чисел сначала находят передаточное число I передачи по заданному техническими условиями максимальному коэффициенту сопротивления дороги ψmах или максимальному динамическому фактору автомобиля по тяге Dmax на I передаче.
Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебрегая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:
u1=(Gaψmaxrk)/Mmaxηтрuгuд
где Ga — вес автомобиля с полной нагрузкой, Н; Mmax — максимальный крутящий момент двигателя, Н • м.
Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I передаче, необходимо выполнение следующего неравенства:
(Mmaxηтрuгuдu1)/ Gark≤Dсц=(mp2Ga2φx)/Ga
где Dсц — динамический фактор автомобиля по сцеплению; тР2 -= 1,20…1,35 — коэффициент изменения реакций на задних ведущих колесах; Ga2 —- вес, приходящийся на задние колеса автомобиля с полной нагрузкой, Н; фх= 0,6…0,8 — коэффициент сцепления колес с дорогой.
Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:
u1=(mp2Ga2φxrk)/ Mmaxηтрuгuд
После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных передаточных чисел I передачи коробки передач для дальнейших расчетов выбирают меньшее.
По этому значению передаточного числа I передачи и известному значению передаточного числа высшей передачи определяют передаточные числа промежуточных передач.
Если высшая передача прямая (ип = 1), то для расчёта передаточных чисел промежуточных передач используют следующее выражение:
Uk=
где п’ — число передач, не считая повышающую передачу и передачу заднего хода; к — номер передачи.
Если высшая передача повышающая (ик < 1), то значение ее передаточного числа выбирают в соответствии с типом автомобиля, а остальные передаточные числа промежуточных передач рассчитывают с помощью приведенного выше выражения.
Передаточное число передачи заднего хода
Uзк=(1.2…..1,3)u1
Окончательное значение передаточного числа передачи заднего хода определяют при компоновке коробки передач.
Рассчитанные передаточные числа коробки передач являются ориентировочными и при проектировании новой коробки передач могут незначительно изменяться.
Передаточные числа КПП
Изменение числа оборотов на разных передачах: давайте представим себе две шестерни у одной будет 10 зубцов, а у второй 20. Так как вторая шестерен больше, она успеет сделать только один оборот, следовательно первая сделает два вращения. Таким образом у разных шестерен разная скорость оборотов за минуту.
Пусть у нас будет 4 шестерни:
- Первая, будет иметь 10 зубцов.
- Вторая, будет иметь 20 зубцов.
- Третья, будет иметь 10 зубцов.
- И четвертая будет также как и вторая – 20 зубцов.
Пусть, первичный вал и первая шестерня будут вращаться со скоростью, к примеру 4000 оборотов за минуту. Тогда вторая шестерня будет вращаться медленней, исходя из вышесказанного, то есть – 2000 оборотов за минуту. Третья шестерня будет тоже делать 2000 оборотов за минуту, так как она закреплена на одном валу со второй шестерней. Получается, что четвертая шестерня будет самой медленной – 1000 оборотов за минуту.
Высчитав обороты за минуту, можно узнать передаточное число. Передаточное число двух пар первой и второй будет 2. Общее передаточное число 4. Это получается, что вторичный вал будет вращаться меньше в 4 раза. Вторичный вал может находится в состоянии покоя, что будет обеспечивать нейтральную передачу. Этого можно достигнуть путем съема зацепенения с третьей и четвертой шестерни. В автомате нейтралка необходима для буксировки автомобиля, используется во время поломки. В механической коробке используется для работы автомобиля если он долго стоит на месте в заведенном состоянии. Так или иначе, эта передача необходима любому автомобилю, но на автомате вы можете ни разу и не включить ее, за все время пользования машиной.
Так как коробка обладает большим набором шестерен, зацепив разные пары мы можем изменять передаточные числа.
Когда передаточное число 1, это обычно так называемая – 4 передача. На ней все валы вращаются одинаково. На самых мощных передачах 1-ой и задней двигатель обычно не испытывает перегрузок, но скорость езды автомобиля очень низкая.
Первая передача включается сразу, как только водитель садится за руль. Первая передача позволяет завести машину и сдвинуть ее с места, далее скорость увеличивается до передачи, комфортной для езды водителю. Водитель может переключаться на слабые и на мощные передачи. Все переключения на слабые передачи происходят последовательно, на сильные передачи можно переключиться перепрыгнув передачу, но так делать нежелательно. Например, с третьей передачи, можно сразу переключиться на пятую, тем самым пропуская четвертую передачу.
Если вы обладатель КПП, то все передачи будут изменяться плавно. За это отвечает гидравлическое или механическое преобразование крутящего элемента.
Чаще всего по трассе ездят на высокой скорости на 4 и 5 передачах, это обусловлено не только экономией времени, но и экономией топлива.
Ни в коем случае нельзя быстро переключать передачи резкими движениями, так как это может навредить корректной работоспособности коробки. Передачи должны переключаться плавно, чтобы успели срабатывать синхронизаторы.
Влияние передаточного на динамику машины
Правильно подобранное передаточное обеспечивает взаимосвязанную работу всех элементов автомобиля. При выборе передаточного числа необходимо руководствоваться характеристиками двигателя, но не стоит забывать и про колеса, точнее про их размер.
Изменяя передаточную величину крутящего момента может увеличиваться или уменьшаться. Это достигается изменением зубьев у каждой шестерни.
Зависимость числа и мощности следующая, чем выше число, тем мощней передача. Это говорит о том, что мотор автомобиля будет в разы быстрее выкручивать заветное количество оборотов. Высокое число обеспечивает быстрое ускорение.
Слишком малая передаточная цифра будет позволять разгонять максимальную скорость, но при этом динамика авто нарушается, поэтому не стоит слишком занижать ее.
Наиболее близкие передаточные числа обеспечивают плавный и быстрый разгон.
Для обычной повседневной езды достаточно количества оборотов в 2000-3000 тыс. Эти значения обычно высвечиваются на тахометре, и если вам все еще не хватает скорости, то нужно всего лишь переключиться на более высокую передачу.
Исходные данные и замеры
На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.
Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.
Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.
Общее определение
Редуктор, как конструкционный элемент, применяется в множестве механизмов. Это технический узел, необходимый для коррекции скорости вращения при передаче движения. Изобретение и распространение редукторов произошло во время развития двигателей разного типа. Это объясняется тем, что появилась необходимость превращать высокую оборотную скорость в усилие крутящего момента, или же наоборот. Для различных целей существует множество разновидностей редукторов, выбор которых играет важнейшую роль для нормального функционирования механизмов.
Передаточное отношение редуктора обозначается мультипликатором, который свидетельствует о типе механизма: понижающий он, или понижающий. Понижающие передаточные редукторы имеют мультипликатор больше 1, редуктор с передаточным числом менее 1 называется повышающим.
В автомобилях редуктора используются для перенаправления силового импульса на колеса с коробки передач, причем всегда скорость вращения снижается. Передаточное число — показатель того, во сколько раз скорость уменьшится. Если передаточное число равняется 4 — это означает, что крутящий момент, передающийся с редуктора на ось, в 4 раза меньше, чем скорость вращения трансмиссии.
Обычно такой механизм устанавливается на ведущую ось, если автомобиль является полноприводным, то устанавливаются два, по одному на каждую ось.
Редуктор не обязательно должен строго соответствовать установленным заводским параметрам, в некоторых случаях при поломке можно заменить на новый узел с меньшим или большим передаточным числом. Как проверить, какой механизм подойдет? Обычно можно делать замену на модели, в которых номинальное передаточное число отличаются не более чем на 0,5 в большую или меньшую сторону. Если взять, к примеру, редукторы автомобилей ВАЗ, есть возможность устанавливать 4 модели. Соответственно скорость работы редуктора уменьшается при увеличении передаточного числа.
Поэтому скорость автомобиля напрямую зависит от скорости работы редуктора, и с помощью замены этого узла можно сделать свой автомобиль более шустрым, например, поставив узел с передаточным числом 20.
При замене узла на модель с большим или меньшим числом, стоит позаботиться о правильной работе спидометра. Так как очень часто он начинает показывать некорректные показатели. Нужно либо заменить тросик, при серьезном сбое, либо просто отрегулировать спидометр.
Что удивительно, при замене редуктора, снять старый и установить новый это самое простое, сложнее всего все правильно отрегулировать и настроить, чтобы общее передаточное число соответствовало необходимым параметрам. Если это не удастся, то даже самый качественный редуктор может быстро выйти из строя.
ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ РЕДУКТОРА К РАСПРЕДЕЛЕНИЕ ЕГО ПО СТУПНЯМ
Очевидно, что передаточное отношение редуктора есть произведение передаточных отношений ступеней. Для двухступенчатых редукторов . Действительно, . Умножив числитель и знаменатель на , получим , где , a .
Выбор передаточных отношений и оказывает существенное влияние на габариты, массу, условия смазки и стоимость редуктора. Ниже приводятся рекомендации по разбивке передаточного отношения двухступенчатых редукторов, подводящие получить приблизительное равенство диаметров равнопрочных колес быстроходной я тихоходной ступеней при использовании материалов колес с одинаковыми механическими характеристиками. Это, в свою очередь, дает возможность спроектировать редуктор с наименьшими габаритами, массой и стоимостью при прочих равных условиях.
Передаточное отношение тихоходной ступени рассчитывают по формуле . Коэффициенты и выбирают в зависимости от типа редуктора, вида зубьев и коэффициента расчетной ширины венца тихоходной ступени .
Для трехосных цилиндрических редукторов (рис. 1.2 а, б) , , если обе ступени или прямозубые, или обе -косозубые и , , если быстроходная ступень косозубая, а тихоходная — прямозубая.
Для соосного редуктора (рис. 1.2 в) , .
Для коническо-цилиндрического редуктора коэффициенты и выбирают из таблицы 1.2 в зависимости от коэффициента расчетной ширины зубчатого венца тихоходной ступени .
Выбор коэффициента определяет размеры установочной площади и их соотношение В/L (ряс. 1.2). Так, с увеличением отношение установочных размеров В/L увеличивается, а установочная площадь В L уменьшается. Значения коэффициента в редукторах общего машиностроения принимают в пределах 0.6 … 1.4.
Коэффициент расчетной ширины венца быстроходной ступени коническо-цилиндрического редуктора рассчитывают по формуле
Для трехосных цилиндрических редукторов .
Для соосных редукторов расчетную ширину зубчатого венце определяет в результате расчета ступени.
Таблица 1.2 | ||||
Значения коэффициентов и для коническо-цилиндрического редуктора | ||||
Коэффициент | Тип зубьев колес тихоходной ступени | |||
Прямые | Косые | |||
0.6 | 1.57 | 0.291 | 1.64 | 0.302 |
0.8 | 1.60 | 0.299 | 1.77 | 0.298 |
1.0 | 1.68 | 0.300 | 1.87 | 0.296 |
1.2 | 1.76 | 0.298 | 1.95 | 0.295 |
1.4 | 1.79 | 0.296 | 2.02 | 0.294 |
Исходными дынными для расчета ступени являются передаточное отношение ступени , коэффициент расчетной ширины венца , угловые скорости шестерни , и колеса , крутящий момент на шестерне Т. Если скорости двигателя и ИУ заданы в об/мин, то , , .
Крутящий момент на шестерне быстроходной ступени определяют по формуле , а на шестерне тихоходной ступени — ,
где — потребная мощность двигателя, кВт;
— КПД зацепления быстроходной ступени.
Отказ от учета потерь в муфте и подшипниках позволяет упростить ввод дачных в ВМ я практически не влияет на размеры передачи.
Результаты расчета и выбора исходных параметров быстроходной и тихоходной ступеней сводят в таблицу 1.3, вписывая числовые значения в две правых колонки вместо идентификаторов (буквенно-цифровое имя) рассчитываемых или выбираемых параметров.
Таблица 1.3 | |||
Исходные параметры к расчету ступеней | |||
Наименование параметра | Размерность | Символ | Ступень |
В | Т | ||
Передаточное отношение | — | UB | UT |
Угловая скорость шестерни | рад/с | OMEG1 | OMEG2 |
Угловая скорость колеса | рад/с | OMEG2 | OMEG3 |
Крутящий момент | Н м | TB1 | TT1 |
Коэффициент расчетной ширины венца | — | PSIB | PSIT |
Передаточное отношение и число зубьев зубчатой передачи
По своей схеме зубчатая передача подобна фрикционной – см.рис.11.1. Только здесь жесткое колесо имеет внутренние, а гибкое – наружные зубья (рис.11.7).
Рис.11.7
Гибкое колесо деформируют так, что в точках В между вершинами зубьев образуется радиальный зазор, а в точках А зубья зацепляются на полную рабочую высоту, в точках Е зацепление промежуточное. Ясно, что для зацепления необходимо равенство модулей зубьев обоих колес.
Передаточное отношение
– положим, что в формулах (11.10) и (11.11) dF и dC – диаметры делительных окружностей
(11.16) При этом
(11.17)
Число зубьев
– на рис.11.7 изображены различные фазы зацепления зубьев. Здесь прямолинейный профиль принят условно, в целях простоты рассуждений. При вращении генератора осуществляется относительный поворот колес F и С, при котором зубья колеса F должны переходить из одной впадины колеса в другую. Для этого и необходимо расцепление зубьев в точке В. За четверть оборота генератора зубья переходят из положения В в положение А. В окружном направлении они смещаются на полшага. При неподвижном колесе С на полшага поворачивается колесо F. За полный оборот генератора – на два шага. Это может быть, если разность zC – zF = 2 или равна числу волн генератора u.
В общем случае
zC – zF = Кzu (11.18)
где Кz = 1, 2, 3, …
Обычно Кz = 1, а u = 2 и тогда
(11.19)
Зубья, на которые набегает генератор (верхняя правая и нижняя левая четверти окружности – рис.11.7), входят в зацеплении. Зубья, от которых убегает генератор (верхняя левая и нижняя правая четверти окружности), выходят из зацепления. При входе в зацепление зубья (Е) совершают рабочий ход и соприкасаются одними сторонами, при выходе (Е’) – холостой ход и соприкасаются другими сторонами.
Рассмотренная схема движения зубьев позволяет понять, что волновая передача может обеспечить одновременное зацепление большого числа зубьев. Теоретически дуга зацепления может распространяться от В до А и от В’ до А’. Или число зубьев в одновременном зацеплении составляет 50% от zF или zC. Например, при
= 100,zF = 200 или 100 зубьев в одновременном зацеплении вместо 1 2 в простых передачах. Это одно из основных преимуществ волновых зубчатых передач. Оно обеспечивает им высокую нагрузочную способность при малых габаритах.
Практически число одновременно зацепляющихся зубьев или размер дуги зацепления зависит от формы и величины деформирования гибкого колеса, от формы профиля зубьев и пр. (см. ниже).
Специфика эксплуатации редуктора заднего моста
Зубчатые колеса во время эксплуатации автомобиля цепляются зубцами друг за друга, однако, даже соблюдая высокие метрологические стандарты производства и регулировки, невозможно избежать их износа. Зубчатые колеса производят из стали высокого качества с закалкой. Редукторный корпус наполняют специальным маслом. Так как масло, будучи жидким, периодически стремится утекать из щелей корпуса, для решения такой проблемы на участках выхода валов применяют специальные прокладки, которые носят названия сальников. К сожалению, ресурс работы сальников существенно ниже самих шестерен, поэтому при их износе редукторный корпус часто содержит масляные подтеки. При полном вытекании масла (такое происходит, если сальники своевременно не заменить), ресурс редуктора сокращается в разы. Помимо этого, сквозь изношенные сальники стремится попасть пыль и грязь. Для профилактики подобных явлений редукторный корпус рекомендуется время от времени проверять, используя смотровую яму.