Вязкость жидкости

Классификация API

Эта система характеризует различия в эксплуатационных характеристиках моторных масел. Придумана она была организацией с названием American Petroleum Institute, что и отражено в аббревиатуре. В этой классификации содержится два раздела, в соответствии с типами моторных масел. Масла для бензиновых моторов маркируются буквой S (Service), а для дизелей буквой C (Commercial). Есть мнение, что буква S означает spark, то есть воспламенение от искры, а C – это compression – воспламенение от сжатия. Мне эта версия кажется более обоснованной, однако материалы на официальном сайте API недвусмысленно намекают на первый вариант. А жаль.

Далее идёт буква, означающая соответствующие эксплуатационные характеристики (например, SJ, SL, SM, или СD, CE, CF и так далее). Вторые буквы меняются в зависимости от принятия более жёстких требований к качеству масла, чем ближе к концу алфавита буква, тем масло лучше. Это вполне совпадает с хронологическим порядком разработки масел. Первые масла после появления этой классификации моторных масел были промаркированы как SA и CA. Они не содержали присадок, соответственно, имели крайне невысокие характеристики и подходили для автомобилей ориентировочно до 1930 года выпуска (как раз в 1931 году в масла начали добавлять присадки). Кстати, о присадках подробнее можно почитать в статье про состав моторного масла. Станет понятно, из чего складываются высокие показатели масла в работе.

По мере разработки новых стандартов, предыдущие признаются устаревшими. Например, на сегодняшний день (2015 год) актуальны градации для бензиновых двигателей:

  • SN – наиболее современная градация, представлена в октябре 2010 года. Предусматривает лучшую на сегодняшний день защиту от высокотемпературных отложений на поршнях, образование шлама, совместимость с материалами уплотнений. Обеспечивает экономию топлива и сбережение ресурса двигателя, совместимость с системами контроля вредных выбросов в выхлопе и защиту двигателей, работающих на этанолосодержащем топливе вплоть до E85 (марка такого топлива, где содержится 85% этанола и 15% бензина). Кстати говоря, если кто не в курсе, чем занимается масло в машине, рекомендую почитать статью о свойствах моторного масла.
  • SM – для автомобилей 2010 года выпуска и старше.
  • SL – для автомобилей 2004 года выпуска и старше.
  • SJ – для автомобилей 2001 года выпуска и старше.

Более современная ступень градации может использоваться вместо предыдущих.

Для дизельных двигателей:

  • CJ-4 – наиболее современная градация, также представлена в 2010 году.
  • CI-4 – для автомобилей 2002 года выпуска и старше. Удовлетворяет требованиям 2004 года к содержанию вредных веществ в выхлопных газах.
  • CH-4 – для автомобилей 1998 года выпуска и старше.

Все остальные градации являются устаревшими и могут быть без проблем заменены на актуальные в старых автомобилях.

В основном, выпускаемые моторные масла являются универсальными и спокойно могут использоваться как в бензиновых движках, так и в дизелях. В этом случае на этикетке масла указываются и бензиновые, и дизельные градации API через дробь (например, API SN/CF), причём на первом месте указывается градация основного предназначения масла – бензиновое или дизельное. Соответственно, если масло рассчитано только на один тип двигателя, то и спецификация пишется только на этот тип.

На маслах, сертифицированных API можно увидеть вот такие значки, на которых указывается класс (а можно и не увидеть, это необязательный атрибут).

Да, кого-то, наверное, интересует вопрос, а что же за цифра 4 стоит в обозначении СI-4 и других? А это означает, что масло годится для четырёхтактного дизеля. Соответственно, бывают масла и для двухтактных дизелей, правда, класс у них только один – CF-2 (ну, ещё у него был предшественник CD-II, но это уже тема отдельной «жевательной» статьи по классификации API, для «увлечённых», так сказать:)).

Вязкость крови

Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.

Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии. На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.

Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.

Динамическая вязкость воды в зависимости от температуры

Кинематическая и динамическая вязкость связаны между собой через значение плотности. Если кинематическую вязкость умножить на плотность, то получим величину коэффициента динамической вязкости (или просто динамическую вязкость).

Динамическая вязкость воды при температуре 20°С равна 1004·10-6 Па·с. В таблице даны значения коэффициента динамической вязкости воды в зависимости от температуры при нормальном атмосферном давлении (760 мм.рт.ст.). Вязкость в таблице указана при температуре от 0 до 300°С. Динамическая вязкость воды — таблица

t, °С 20 40 60 80 100 120 140
μ·106, Па·с 1788 1004 653,3 469,9 355,1 282,5 237,4 201,1
t, °С 160 180 200 220 240 260 280 300
μ·106, Па·с 173,6 153,0 136,4 124,6 114,8 105,9 98,1 91,2

Динамическая вязкость при нагревании воды уменьшается, вода становится менее вязкой и при достижении температуры кипения 100°С величина вязкости воды составляет всего 282,5·10-6 Па·с.

Как оценивается вязкость масел?

Общество инженеров автомобильной промышленности (Society of Automotive Engineers, SAE) разработало шкалу для моторных и трансмиссионных масел.

Вязкость обозначается как «XW-XX». Число, предшествующее букве «W», оценивает текучесть масла при 0 градусов по Фаренгейту (-17,8 градусов по Цельсию). Буква W означает «Зима (Winter)», а не вес, как думают многие. Чем ниже число здесь, тем меньше оно густеет на морозе. Таким образом, моторное масло с вязкостью 5W-30 густеет на морозе меньше, чем 10W-30, но больше, чем 0W-30. Двигатель в более холодном климате, где моторное масло имеет тенденцию густеть из-за более низких температур, выиграл бы от вязкости 0 или 5 Вт. Автомобилю в Долине Смерти понадобится большее число, чтобы масло не истончалось слишком сильно.

Второе число после «W» указывает на вязкость масла, измеренную при 212 градусах по Фаренгейту (100 градусов по Цельсию). Это число отражает устойчивость масла к истончению при высоких температурах. Например, масло 10W-30 будет разжижаться при более высоких температурах быстрее, чем 10W-40.

Моноградные масла, такие как SAE 30, 40 или 50, больше не используются в новейших автомобильных двигателях, но могут потребоваться для использования в некоторых старых двигателях. Масло SAE 30 часто применяется для небольших двигателей с воздушным охлаждением в газонокосилках, садовых тракторах, переносных генераторах и бензопилах.

На что влияет вязкость моторного масла

Вязкость газов[ | ]

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η = 1 3 ⟨ u ⟩ ⟨ λ ⟩ ρ {\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho } ,

где ⟨ u ⟩ {\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ {\displaystyle \rho } прямо пропорциональна давлению, а ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u {\displaystyle u} , растущей с температурой как T {\displaystyle {\sqrt {T}}}

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда

может быть использована для определения вязкости идеального газа в зависимости от температуры:

μ = μ 0 T 0 + C T + C ( T T 0 ) 3 / 2 , {\displaystyle {\mu }={\mu }_{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}

где:

  • μ — динамическая вязкость в (Па·с) при заданной температуре T;
  • μ0 — контрольная вязкость в (Па·с) при некоторой контрольной температуре T0;
  • T — заданная температура в Кельвинах;
  • T0 — контрольная температура в Кельвинах;
  • C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T0, K μ0, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4 273 19

Различные типы вязкости

Чаще всего в лабораториях измеряют и рассчитывают динамическую и кинематическую вязкость нефтепродуктов.

  • Кинематический показатель в-ти получают с помощью вискозиметра. Пробу вещества помещают в прибор, и она постепенно вытекает под действием силы тяжести через специальное отверстие. Время истечения автоматически засекается, оно умножается на постоянную вискозиметра (у каждого устройства она своя). Таким образом происходит определение кинематической вязкости нефтепродуктов. Вычисление, как правило, проводит сам вискозиметр.
  • Динамическая в-ть вычисляется из кинематической: плотность исследуемого вещества × на измеренную кинематическую вязкость.

Исследование должно проводиться по стандарту: это ГОСТ вязкости нефтепродуктов − 33-2000.

Если вязкость нефтепродукта нельзя определить по ГОСТ-33, применяется ГОСТ 6258-85 и исследуется условная вязкость нефтепродуктов. Ее записывают в градусах условной вязкости. Методика очень простая: сначала измеряется за какое время проба вещества в 200 мл истечет из вискозиметра при заданной температуре. Потом исследуется время истечения 200 мл дистиллированной воды при 20 °С. Отношение первое полученной величины ко второй и является условной вязкостью.

Общие сведения

Вязкие сливки, налитые в кофе с меньшей вязкостью

Вязкость — свойство жидкостей противостоять силе, которая вызывает их текучесть. Вязкость подразделяют на два типа — на динамическую и кинематическую. В отличие от кинематической вязкости, динамическая или абсолютная вязкость — независима от плотности жидкости, так как она определяет внутреннее трение в жидкости. Абсолютная вязкость часто связана с напряжением сдвига, то есть напряжением, которое вызвано силой, действующей параллельно поперечному сечению тела, или, в нашем случае, жидкости. Для примера, представим жидкость настолько вязкую, что на протяжении нескольких минут она может держать форму, например куба, практически без изменений. Это может быть, например, густое фруктовое повидло. Положим этот куб на тарелку, и проведем по его верхней стороне рукой параллельно этой стороне. Сила, с которой рука действует на повидло, вызывает напряжение сдвига. Так как повидло очень вязкое, то оно потянется за рукой и куб изменит свою форму. То есть вязкость — это свойство повидла не растекаться, а, наоборот, следовать движению руки.

В основном вязкость — это свойство жидкостей и газов, хотя иногда твердые тела также описывают с помощью вязкости. Особенно это свойство присуще телам, если они подвергаются малому, но постоянному напряжению, и их форма постепенно искажается. Высокая вязкость вещества характеризуется высоким сопротивлением напряжению сдвига.

Когда говорят о вязкости вещества, то обязательно указывают температуру, при которой тело имеет эту вязкость, так как это свойство изменяется в зависимости от температуры. Например, гораздо легче размешать теплый мед, чем холодный, так как он менее вязок. То же происходит и со многими маслами. К примеру, оливковое масло при комнатной температуре совсем не вязкое, но в холодильнике его вязкость заметно увеличивается.

Вода — ньютоновская жидкость

Ньютоновские и неньютоновские жидкости

Кода говорят о вязкости, различают два типа жидкостей: ньютоновские и неньютоновские. Вязкость первых не зависит от силы, на них действующей. Со вторыми дело обстоит сложнее, так как в зависимости от величины этой силы и от того, как она приложена, они становятся более или менее вязкими. Хороший пример неньютоновской жидкости — сливки. В обычных условиях они почти совсем не вязкие. Их вязкость не изменяется, даже если приложить к ним небольшую силу, например, медленно мешать их ложкой. Если же увеличить эту силу, например если мешать их миксером, то вязкость также начнет постепенно увеличиваться, пока не станет настолько велика, что сливки смогут держать форму (взбитые сливки). Также ведут себя и сырые яичные белки.

Определение вязкости масла

О том, что любой смазочный материал должен препятствовать такому явлению, как сухое трение между движущимися и соприкасающимися деталями, знают даже школьники. В отношении автомобильного двигателя задача масла соответствующая – уменьшить силу трения в цилиндропоршневой группе при обеспечении максимальной герметичности цилиндров. Решение этой задачи не выглядит тривиальным, поскольку силовой агрегат вынужден работать в очень широком температурном диапазоне, от минусовых (холодный двигатель, пуск зимой) до плюс 300ºС – такой режим характерен для некоторых узлов прогретого мотора.

Отметим, что многие водители убеждены, что та температура, которая отображается на шкале прибора, измеряет температуру самого двигателя. Это, конечно же, заблуждение – датчик измеряет только температуру тосола. А она действительно на прогретом моторе практически одинакова во всём контуре и составляет примерно 90 градусов. Узлы же силового агрегата греются по-разному. Соответственно, и температура моторного масла тоже «гуляет», причём в достаточно широких пределах, доходя до значений порядка 150ºС.

А поскольку современные двигатели представляют собой достаточно сложную конструкцию, их производители рекомендуют использовать смазочные жидкости с вполне определёнными эксплуатационными характеристиками. Именно они обеспечивают максимально возможный КПД двигателя за счёт уменьшения силы трения, способствуя снижению износа трущихся деталей при среднестатистических нагрузках на мотор.

И важнейшей из этих характеристик является вязкость ММ. Самое простое и понятное определение вязкости следующее: это способность масла сохранять свою текучесть в заданных условиях работы, оставаясь на поверхности трущихся деталей. Добиться этого не сложно, если бы не динамически изменяемый температурный режим: на непрогретом двигателе он один, при работе в штатном режиме – другой – при повышенных нагрузках – третий.

Понятно, что изобрести некий универсальный состав, который бы одинаково хорошо работал независимо от внешних условий, невозможно.

А чтобы и автопроизводители, и потребители имели возможность как-то оценивать вязкость конкретных масел, Ассоциация автоинженеров США (SAE) разработала и внедрила классификацию ММ по их вязкости, в соответствии с определёнными температурными режимами работы. Другими словами, классификация упрощает выбор масла в зависимости от предпочтительного режима эксплуатации автомобиля.

У многих водителей вызывает затруднение расшифровка вязкости масла, указываемая на маркировке смазочных жидкостей для мотора в соответствии с классификацией по SAE. Как правило она начинается с одной или двух цифр, за которыми следует буква W, а через тире следует ещё одна пара цифр.

Рассмотрим на простом и доступном уровне, что означают эти цифры в отношении вязкости масла. То, что стоит до буквы W – так называемая низкотемпературная вязкость, указывающая на возможность запуска мотора при определённой отрицательной температуре (вычислить её можно, отняв от указанной цифры значение 40). То есть 5W обозначает, что такая жидкость обеспечивает беспроблемный пуск двигателя при температуре не ниже минус 40 градусов.

Отметим, что данный показатель касается только нижнего порога температур для холодного мотора, не влияя на рабочие характеристики масла, используемого на горячем силовом агрегате. Но опять же, производители масел рассчитывают этот параметр на основании испытаний на конкретных моторах, поэтому он является, так сказать, усреднённым. В действительности всё зависит от конкретного мотора, поэтому ориентироваться нужно на рекомендации автопроизводителя, а не на маркировку. Отметим, что, если в конкретном регионе максимальные морозы не превышают -20°С, можно использовать ММ с практически любым префиксом, поскольку масла с индексом, большим 20W, встречаются на рынке очень редко.

Вторая группа цифр указывает на высокотемпературный показатель вязкости, однако здесь нет прямой зависимости от температуры. Он обозначает некий обобщённый параметр, характеризующий минимальную/максимальную вязкость ММ при функционировании в рабочем диапазоне температур (а это в среднем 100-150 градусов). Чем выше этот показатель, тем больше вязкость масла при работе в более высоком температурном режиме. А слишком жидкое масло не сможет обеспечить выполнение своих непосредственных обязанностей – смазывать трущиеся поверхности. Так что интерпретация второго пары цифр даже среди специалистов вызывает определённые разногласия, и совет придерживаться рекомендаций автопроизводителей здесь ещё более актуален.

Примеры задач с решением

Пример 1

Задание. Получите единицу измерения динамической вязкости жидкости, используя выражение связывающее коэффициент вязкости и коэффициент диффузии.

Решение. В качестве основы для решения задачи (по ее условию) мы будем использовать формулу, которая определяет коэффициент динамической вязкости жидкости:

\

где $\left=Н$; $\left=\frac{м^2}{с}$. В основных единицах системы СИ, ньютон выражается как:

\

Используя выражение (1.1), получаем:

\=\frac{\left}{\left}=\frac{кг\cdot м}{с^2}\cdot \frac{с}{м^2}=\frac{кг}{с\cdot м}=\frac{кг}{с^2\cdot м}\cdot с=Па\cdot с.\]

Ответ. Мы получили, что $Па\cdot с$ — единица измерения динамической вязкости жидкости.

Пример 2

Задание. Маленький шарик, плотность которого $\rho $, радиус $r$ всплывает в сосуде, наполненном жидкостью (${\rho }_j$ — плотность жидкости). Скорость движения шарика постоянна и равна $v$. Какова динамическая вязкость жидкости ($\eta $)? Используя полученную формулу, проверьте, в каких единицах измеряется полученная вязкость.

Решение. Изобразим силы, действующие на шарик при его движении в жидкости. Это сила тяжести ($m\overline{g}$); сила Архимеда (${\overline{F}}_A$); сила Стокса (сила вязкого трения) ($\overline{F}$).

По второму закону Ньютона (учитывая, что шарик движется равномерно) имеем:

\

Запишем проекцию уравнения (1.1) на ось Y:

\

где:

\

Следовательно:

\

Используя полученное выражение для коэффициента вязкости ($\eta =\frac{{2r}^2g}{9v}\left({\rho }_j-\rho \right)$) определим единицу измерения для $\eta $:

\=\left=\frac{\left\left}{\left}\left(\left\right)=\frac{м^2\cdot \frac{м}{с^2}}{{м}/{с}}\cdot \frac{кг}{м^3}=\frac{кг}{м\cdot с}=Па\cdot с.\]

Ответ. $\eta =\frac{{2r}^2g}{9v}\left({\rho }_j-\rho \right)$

Вязкость меда

Очень вязкой жидкой средой является мед. Его вязкость зависит от зрелости, то есть от содержания в продукте воды. Так, при содержании 25 % воды коэффициент вязкости меда равен 1,051, а при 16,6 % — 9,436 (при температуре 45 °С). Кроме того, этот показатель увеличивается в результате кристаллизации. Вязкость продукта повышают декстрины и коллоиды.

Зрелость меда определить несложно. Нужно зачерпнуть ложкой продукт и быстро поворачивать ее: незрелый мед будет стекать.

Хотя состав меда не особо влияет на его вязкость, некоторые сорта в этом отношении отличаются. В связи с этим выделяется 5 групп продукта:

  • очень жидкий (акациевый, клеверный).
  • жидкий (гречишный, липовый, рапсовый);
  • густой (одуванчиковый);
  • клейкий (падевый);
  • студнеобразный (вересковый).

В промышленных условиях мед перекачивают кулачковыми и винтовыми насосами.

Общие сведения

Вязкие сливки, налитые в кофе с меньшей вязкостью

Вязкость — свойство жидкостей противостоять силе, которая вызывает их текучесть. Вязкость подразделяют на два типа — на динамическую и кинематическую. В отличие от кинематической вязкости, динамическая или абсолютная вязкость — независима от плотности жидкости, так как она определяет внутреннее трение в жидкости. Абсолютная вязкость часто связана с напряжением сдвига, то есть напряжением, которое вызвано силой, действующей параллельно поперечному сечению тела, или, в нашем случае, жидкости. Для примера, представим жидкость настолько вязкую, что на протяжении нескольких минут она может держать форму, например куба, практически без изменений. Это может быть, например, густое фруктовое повидло. Положим этот куб на тарелку, и проведем по его верхней стороне рукой параллельно этой стороне. Сила, с которой рука действует на повидло, вызывает напряжение сдвига. Так как повидло очень вязкое, то оно потянется за рукой и куб изменит свою форму. То есть вязкость — это свойство повидла не растекаться, а, наоборот, следовать движению руки.

В основном вязкость — это свойство жидкостей и газов, хотя иногда твердые тела также описывают с помощью вязкости. Особенно это свойство присуще телам, если они подвергаются малому, но постоянному напряжению, и их форма постепенно искажается. Высокая вязкость вещества характеризуется высоким сопротивлением напряжению сдвига.

Когда говорят о вязкости вещества, то обязательно указывают температуру, при которой тело имеет эту вязкость, так как это свойство изменяется в зависимости от температуры. Например, гораздо легче размешать теплый мед, чем холодный, так как он менее вязок. То же происходит и со многими маслами. К примеру, оливковое масло при комнатной температуре совсем не вязкое, но в холодильнике его вязкость заметно увеличивается.

Вода — ньютоновская жидкость

Ньютоновские и неньютоновские жидкости

Кода говорят о вязкости, различают два типа жидкостей: ньютоновские и неньютоновские. Вязкость первых не зависит от силы, на них действующей. Со вторыми дело обстоит сложнее, так как в зависимости от величины этой силы и от того, как она приложена, они становятся более или менее вязкими. Хороший пример неньютоновской жидкости — сливки. В обычных условиях они почти совсем не вязкие. Их вязкость не изменяется, даже если приложить к ним небольшую силу, например, медленно мешать их ложкой. Если же увеличить эту силу, например если мешать их миксером, то вязкость также начнет постепенно увеличиваться, пока не станет настолько велика, что сливки смогут держать форму (взбитые сливки). Также ведут себя и сырые яичные белки.

Единица измерения коэффициента динамической вязкости

В Международной системе единиц (СИ) паскаль, умноженный на секунду — единица измерения динамической вязкости. Специального названия единица динамической вязкости не имеет. Единицу измерения коэффициента внутреннего трения легко получить, если использовать выражение (2). Рассмотрим единицы измерения физических величин, которые входят в правую часть формулы (2). Так $\left=$м; $\left=\frac{м}{с}$; $\left=\frac{кг}{м^3}$, получим:

\=\left=\left\left\left=м\cdot \frac{м}{с}\cdot \frac{кг}{м^3}=\frac{кг}{м\cdot с}=Па\cdot с.\]

В системе СГС (сантиметр, грамм, секунда) пуаз — единица измерения динамической вязкости. Соотношение между $Па\cdot с$ (единица измерения динамической вязкости в СИ) и паузом:

\

Определение кинематической вязкости нефтепродукта в капиллярных вискозиметрах

Приборы для определения вязкости называются вискозиметрами. Чаще всего для определения кинематической вязкости по ГОСТ 33-82 пользуются стеклянными вискозиметрами типа.

Пинкевича и ВПЖТ-2 с помощью которых измеряют кинематическую вязкость продуктов при положительных и отрицательных значениях температуры. В основе метода лежит известная формула Пуазейля для динамической вязкости:

n=(3.14Pr4/8LV ) t

где

  • Р – давление, при котором происходит истечение жидкости из капилляра
  • r – радиус капилляра
  • L – длина капилляра
  • V – объем жидкости, протекающей через капилляр
  • t – время истечения жидкости в объеме V.

Кинематическая вязкость

Кинематическая вязкость связывает динамическую вязкость с плотностью жидкости. Принимая значение динамической вязкости, Кинематическая вязкость жидкости по следующей формуле:

В этой степени вязкость — это сопротивление жидкости скольжению, а плотность — это удельный вес (масса / объем), деленный на силу тяжести.. Например, вязкое моторное масло медленно скользит по трубке, но все же будет менее плотным, чем вода, когда плавает по ней. В этом случае вода менее вязкая, но более плотная, чем масло.

Для расчета кинематической вязкости используется конкретная единица измерения в Цегешемальной системе единиц Стокса (St) (CGS).

Важно отметить, что как динамическая, так и кинематическая вязкость зависят от природы жидкости и температуры, например, чем выше температура жидкости, тем она менее вязкая, поскольку сцепление молекул становится более слабым. См

Также Вязкость

См. Также Вязкость.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды

Вязкость воздуха


Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K Вязкость воздуха зависит в основном от температуры. При 15,0 °C вязкость воздуха составляет 1,78·10−5 кг/(м·с), 17,8 мкПа·с или 1,78·10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов.

Вязкость воды

Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor) Динамическая вязкость воды составляет 8,90·10−4 Па·с при температуре около 25 °C. Как функция температуры: T = A × 10B/(T−C), где A = 2,414·10−5 Па·с; B = 247,8 K; C = 140 K.

Значения вязкости жидкой воды при разных температурах вплоть до точки кипения приведены в таблице:

Температура, °C Вязкость, мПа·с
10 1,308
20 1,002
30 0,7978
40 0,6531
50 0,5471
60 0,4668
70 0,4044
80 0,3550
90 0,3150
100 0,2822

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей: Вязкость отдельных видов газов

Газ при 0 °C (273 K), мкПа·с при 27 °C (300 K), мкПа·с
воздух 17,4 18,6
водород 8,4 9,0
гелий 20,0
аргон 22,9
ксенон 21,2 23,2
углекислый газ 15,0
метан 11,2
этан 9,5

Вязкость жидкостей при 25 °C

Жидкость Вязкость, Па·с Вязкость, мПа·с
ацетон 3,06·10−4 0,306
бензол 6,04·10−4 0,604
кровь (при 37 °C) (3—4)·10−3 3—4
касторовое масло 0,985 985
кукурузный сироп 1,3806 1380,6
этиловый спирт 1.074·10−3 1.074
этиленгликоль 1,61·10−2 16,1
глицерин (при 20 °C) 1,49 1490
мазут 2,022 2022
ртуть 1,526·10−3 1,526
метиловый спирт 5,44·10−4 0,544
моторное масло SAE 10 (при 20 °C) 0,065 65
моторное масло SAE 40 (при 20 °C) 0,319 319
нитробензол 1,863·10−3 1,863
жидкий азот (при 77K) 1,58·10−4 0,158
пропанол 1,945·10−3 1,945
оливковое масло 0,081 81
пек 2,3·108 2,3·1011
серная кислота 2,42·10−2 24,2
вода 8,94·10−4 0,894
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector