Как называется такт работы двигателя

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Ремонт двухтактных двигателей внутреннего сгорания

Ремонт двухтактных ДВС осуществляется только квалифицированными рабочими по технологическим и маршрутным картам, которые разрабатывают инженеры и проектировщики. Эти инструкции дают рабочему понять, где и когда использовать ту или иную операцию, как и каким порядком устанавливать детали, а также в какой последовательности и с усилием их затягивать.

Сами «двухтактники» устанавливаются в специальные стенды-кантователи, которые позволяют с большим удобством и правильно, доступно визуально осуществить правильную сборку и протяжку его узлов.

Разработка процесса ремонта ДВС включает в себя не только визуальный осмотр и мойку всего узла в моечной машине, но и разработку карт дефектов деталей, маршрутные карты восстановления и т.д.

Именно таким образом осуществляет ремонт двухтактных ДВС в производственных условиях АТП.

Сколько цилиндров бывает в двигателе

На всем протяжении истории машиностроения инженеры и конструкторы преследуют одну цель – получение максимальной отдачи от двигателя. Для ее достижения разрабатывались все более мощные моторы с различным количеством цилиндров – от 1 до 16, принимались и принимаются попытки размещения «лошадиных сил» в как можно меньшем объеме подкапотного пространства.

Двигатели с одним цилиндром устанавливаются в мини-тракторах, маломощных мопедах и мотоциклах. Для более мощной мототехники требуется уже 4-тактный 2-цилиндровый мотор.Современные трехцилиндровые ДВС преимущественно ставятся на малолитражных легковых автомобилях и для повышения мощности оснащаются турбиной.

Двигатели пятицилиндровые не столь популярны. Ранее они широко использовались такими гигантами мирового автопрома, как Volkswagen,Volvo,Audi

Шести- и 8 цилиндровые двигатели также популярны. Несмотря на общемировую практику уменьшения числа цилиндров за счет турбирования, такие ДВС постепенно теряют свои позиции. Многие автоконцерны в последние годы отказываются от восьмицилиндровых в пользу 6 цилиндровых двигателей, особенно это заметно по рынку мощных легковых машин.

ДВС с 7 или 9 цилиндрами применяются в авиатехнике. В автопромышленности они не используются, за редким исключением – в тюнингованных моделях. 
10- и 11-цилиндровые в автомобилестроении также большая редкость. Полюбоваться «десяткой» можно на спорткаре Audi R8. 

Двигатель с 12 цилиндрами в автопромышленности использовался более широко. Но из-за ужесточения экологических норм их производство неумолимо сокращается.

Существуют также ДВС с 14, 16, 18, 20, 24, 28, 32 и 64 цилиндрами. Они представляют собой сочетание нескольких двигателей с меньшим количеством цилиндров и в производстве автомобилей практически не применяются.

Основные отличия между двухтактным и четырехтактным ДВС

Одно из основных отличий рассматриваемых агрегатов в наличии газораспределительного механизма на 4-тактном моторе. На 2-тактных устройствах газораспределительного механизма нет. Вместо него имеются отверстия в стенках цилиндра, через которые и происходит подача готовой топливно-воздушной смеси, а также отвод выхлопных газов.

ГРМ не только увеличивает вес и размер двигателя, но еще и существенно влияет на его стоимость. Отсутствие ГРМ приводит к тому, что двигатель имеет только два цикла работы. Наличие каналов в стенках цилиндра приводит к увеличенному износу колец и поршня двигателя. Именно поэтому двухтактные двигатели имеют небольшой ресурс работы. Далее рассмотрим конструктивные отличия между 2-тактным и 4-тактным моторами.

  1. Потребление топлива — несмотря на то, что двухтактный агрегат имеет простое строение, в плане потребления бензина он проигрывает четырехтактному. Связано это с количеством тактов. В то время, как 4-цикловый агрегат совершает 2 оборота коленчатого вала, потребляя при этом одну порцию топлива, двухтактный двигатель при этом делает только один оборот. Увеличение расхода топлива составляет примерно 1,5 раза. Кроме того, не стоит забывать, что 2-тактный агрегат имеет несовершенную систему, и в процессе работы наблюдается потеря топливной смеси, выбрасываемой в глушитель. Это часть смеси, которая «вылетает в трубу» при движении поршня вверх в момент сжатия
  2. Тип топлива — моторы 4-тактного типа работают на чистом бензине, который в карбюраторе смешивается с воздухом. Агрегаты 2-тактного типа работают на смеси масла с бензином. Использование чистого бензина недопустимо, что повлечет за собой быстрый выход из строя цилиндропоршневой группы
  3. Система смазки — многие знают, что именно по этому принципу рассматриваемые агрегаты отличаются. В 4-тактном моторе имеется отдельная система смазки, состоящая не только из емкости, но еще и масляного насоса, фильтров и трубопроводной магистрали. Система смазки не взаимосвязана с механизмом подачи топлива, что говорит не только об эффективности, но и продолжительном сроке службы. Двухтактные моторы работают на бензине с маслом. Пропорции смешивания бензина с маслом для бензопилы и бензокосы описаны на сайте. Бензин вместе с малом подается в двигатель, где осуществляется смазка механизма. Стоит отметить, что далеко не все двухтактные моторы имеют общую систему смазки, но встречаются еще и агрегаты с раздельным механизмом, где смешивание происходит автоматически в зависимости от количества оборотов
  4. Тип смазывающих веществ или отличие масла для двухтактного мотора от 4-тактного. Для двухтактных двигателей используются специальные масла «сгорающего» типа. Это масло смешивается с бензином, и попадают в систему КШМ, обеспечивая смазку движущихся деталей. После этого масло в составе с бензином поступает в цилиндр, где воспламеняется и сгорает. Это масло называется двухтактным, и выпускается оно красного или зеленого цвета. Цвет не играет большой роли, и говорит о применении присадок в составе. Четырехтактные моторы работают на чистом бензине, так как они имеют отдельный механизм, отвечающий за смазку КШМ. В таких моторах используется обычное моторное масло, которое нельзя смешивать с бензином, и заливать в двухтактные агрегаты. Это приведет к быстрому засорению электродов свечи и выходу из строя ДВС. Получается, что отличие масла для двухтактных двигателей от четырехтактных заключается в консистенции и составе. На 2-цикловых ДВС используются сгораемые типы масел, которые перед тем, как сгореть, смазывают всю систему

По системе смазки четырехтактных двигателей нужно отметить, что они бывают двух типов — с сухим и мокрым картером. Различаются они по способу смазки. В мокром типе происходит подача масла из картера на КШМ. Насос перекачивает масло из картера, являющегося частью двигателя.

На ДВС с сухим картером используется отдельный бак с маслом. Из него масло насосом перекачивается в систему КШМ, обеспечивая смазку деталей. Скапливающееся масло обратно транспортируется в бак при помощи дополнительного насоса.

Зная основные конструктивные и принципиальные отличия рассматриваемых механизмов, следует разобраться с их достоинствами и недостатками, которые имеются у обоих вариантов.

Четырехтактный двигатель его устройство и как он работает

Агрегаты четырехтактного типа имеют более сложное строение, но при этом они отличаются высокой производительностью и большим сроком службы. Их работа состоит из 4 циклов, о чем упоминалось выше. Это такт впуска топливной смеси, ее сжатие, рабочий ход и выпуск сгоревших газов. В отличие от двухтактных, на 4-х тактных моторах имеется масляный картер, посредством которого осуществляется смазывание вращающихся и трущихся деталей. Чтобы понимать, о чем идет речь, ниже представлена схема устройства четырехтактного двигателя внутреннего сгорания.

На схеме выше обозначены основные конструктивные элементы двигателя внутреннего сгорания 4-тактного типа:

  1. Цилиндр — основание, в котором осуществляется перемещение поршня
  2. Поршень — главный рабочий элемент всех двигателей внутреннего сгорания. Поршень имеет кольца, посредством которых обеспечивается сжатие топливной смеси
  3. Шатун — соединительный элемент между коленчатым валом и поршнем
  4. Коленчатый вал — находится в кривошипно-шатунной камере
  5. Палец шатуна — соединительный элемент между коленчатым валом и шатуном
  6. Камера сгорания — в этой камере происходит сжатие топлива и его воспламенение
  7. Впускной клапан — при его открытии в камеру сгорания поступает топливная смесь из карбюратора
  8. Выпускной клапан — открывается для выведения выхлопных газов из камеры сгорания
  9. Свеча зажигания — воспламеняет топливную смесь

Принцип работы аналогичен с двухтактными моторами, но есть некоторые отличительные особенности. Рассмотрим далее принцип работы четырехтактного мотора по циклам.

Первый такт. Транспортировка воздушно-топливной смеси в камеру сгорания выполняется при открытии впускного клапана. Поршень при этом находится в верхней мертвой точке. Открытие клапана выполняется посредством кулачков газораспределительного механизма. Засасывание топливной смеси происходит до момента, пока поршень не достигнет нижней мертвой точки. Коленчатый вал при этом совершает пол оборота.

Второй такт. Начинается он с того, что поршень движется с нижней мертвой точки в верх. При этом осуществляется сжатие поступившей на предыдущем этапе топливно-воздушной смеси. Как только поршень достигает верхней мертвой точки, возникает искра, создаваемая свечой зажигания. Вместе с первым тактом, коленчатый вал совершает один оборот.

Третий такт. От силы давления, сформировавшегося от сжигания смеси, обеспечивается перемещение поршня из верхней мертвой точки в нижнюю. Такое перемещение поршня после сгорания газов называется рабочим ходом. Выхлопные газы на третьем этапе находятся в камере до момента, пока поршень не достигнет нижней мертвой точки. После этого начинается завершающий этап.

Четвертый такт. Поршень перемещается с нижней мертвой точки в верхнюю, тем самым осуществляя высвобождение камеры сгорания от находящихся в ней выхлопных газов. Для этого происходит открытие выпускного клапана, который также при помощи кулачка соединен с газораспределительным механизмом. После этого цикл повторяется.

Анимированное изображение принципа работы четырехтактного двигателя показано на схеме ниже.

Четырехтактные моторы являются более совершенными, выносливыми и надежными по сравнению с двухтактными.

Техническая характеристика

ОБЩИЕ СВЕДЕНИЯ

Расположение цилиндров и направление вращения распределителя зажигания

Расположение цилиндров (со стороны ремня)

Правая сторона (задняя) 1–3–5
Левая сторона (у радиатора) 2–4–6
Порядок работы цилиндров 1–2–3–4–5–6

Головка блока цилиндров

1 – выпускной левый коллектор;2 – прокладка;3 – термозащитный экран выпускного коллектора;4 – прокладка;5 – выпускной правый коллектор;6 – термозащитный экран выпускного коллектора;7 – прокладка головки блока цилиндров;8 – кожух зубчатого ремня;9 – правая головка блока цилиндров;10 – распределительный вал, управляющий впускными клапанами;11 – распределительный вал, управляющий выпускными клапанами;12 – шайба;13 – упорное кольцо;14 – шкив распределитель ного вала;15 – стопорное кольцо;16 – прокладка;17 – крышка головки блока цилиндров;18 – прокладки;19 – впускной коллектор;20 – кронштейн холостого шкива;21 – прокладка;22 – штуцер системы охлаждения;23 – прокладка;24 – кронштейн воздухозаборника;25 – EGR–труба;26 – прокладки;27 – EGR–клапан и вакуумный модулятор;28 – вакуумные трубы;29 – воздухозаборник;30 – прокладки;31 – обводной патрубок системы охлаждения; 32 – термозащитный экран перепускной трубы;33 – уплотнительная шайба;34 – крышка головки блока цилиндров;35 – прокладка;36 – крышка подшипника распределительного вала;37 – распределительный вал, управляющий впускными клапанами;38 – распределительный вал, управляющий выпускными клапанами;39 – задняя пластина головки блока цилиндров;40 – прокладка трубы свечи зажигания;41 – левая головка блока цилиндров;42 – левая проушина двигателя;43 – прокладка головки блока цилиндров;44 – регулировочная прокладка;45 – толкатель клапана;46 – верхняя тарелка пружины;47 – пружина;48 – гнездо пружины;49 – направляющая втулка клапана;50 – клапан;51 – перепускная выхлопная труба;52 – прокладка;53 – термозащитный экран выпускного коллектора;54 – уплотнительное кольцо распредели тельного вала;55 – сухари;56 – уплотнительное кольцо;57 – упорное кольцо;58 – прокладки

Головка блока цилиндров

Неплоскостность:
– двигатель 3VZ-FE (1992 и 1993):
• головка блока цилиндров 0,099 мм
• впускной коллектор 0,099 мм
• выпускной коллектор 1,0 мм
– двигатель 1MZ-FE (1994):
• головка блока цилиндров 0,099 мм
• впускной коллектор 0,078 мм
• выпускной коллектор 0,49 мм

Распределительный вал

Зазор клапанов (на холодном двигателе):
– впускные клапана 0,127 – 0,23 мм
– выпускные клапана 0,28 – 0,38 мм
Диаметр шеек 26,940 – 26,960 мм
Зазор в подшипниках:
– номинальный 0,035 – 0,071 мм
– минимальный 0,099 мм
Высота кулачков:
– двигатель 3VZ-FE (1992 и 1993)
Распределительный вал, управляющий впускными клапанами:
– номинальная 42,158 – 42,260 мм
– предельно допустимая 42,000 мм
– двигатель 1MZ-FE (с 1994)
Распределительный вал, управляющий впускными клапанами:
– номинальная 42,110 – 42,210 мм
– предельно допустимая 42,050 мм
Распределительный вал, управляющий впускными клапанами:
– номинальная 41,960 – 42,050 мм
– предельно допустимая 41,810 мм
Осевой люфт распределительного вала
– номинальный
• двигатель 3VZ-FE(1992 и 1993) 0,033 – 0,078 мм
• двигатель 1 MZ-FE (с 1994) 0,040 – 0,088 мм
– предельно допустимый 0,119 мм
Люфт шестерен распределительного вала:
– номинальный 0,02 – 0,20 мм
– предельно допустимый 0,47 мм
Расстояние между торцами пружины шестерни распределительного вала 22,5 – 22,9 мм

Толкатель клапана

Диаметр 30,96 – 30,97 мм
Диаметр канала толкателя 31,00 – 31,018 мм
Зазор толкателя в головке:
– номинальный 0,022 – 0,050 мм
– предельно допустимый 0,071 мм

Масляный насос

Зазор между внешним ротором и корпусом:
– номинальный 0,099 – 0,170 мм
– предельно допустимый 0,299 мм
Осевой люфт ротора:
– номинальный 0,030 – 0,088 мм
– предельно допустимый 0,149 мм

Моменты затягивания

Двигатель 3VZ-FE (1992 и 1993)
Гайки выпускного коллектора 40 Нм
Болт шкива коленчатого вала 250 Нм
Болты холостого шкива:
– номер 1 35 Нм
– номер 2 40 Нм
Механизм натяжения зубчатого ремня 28 Нм
Шкив распределительного вала 110 Нм
Болты крепления головки блока цилиндров:
– стадия 1 35 Нм
– стадия 2 довернуть на угол 90°
– стадия 3 довернуть на угол 90°
Болты масляного насоса:
– головка болта 12 мм 35 Нм
– головка болта 14 мм 40 Нм
Маховик / пластина привода 85 Нм
Двигатель 1MZ-FE (с 1994)
Выпускной коллектор 50 Нм
Болт шкива коленчатого вала 220 Нм
Болты холостого шкива:
– номер 1 35 Нм
– номер 2 45 Нм
Механизм натяжения зубчатого ремня 28 Нм
Шкив распределительного вала 130 Нм
Болты крепления головки блока цилиндров:
– стадия 1 55 Нм
– стадия 2 довернуть на угол 90°
Маховик / пластина привода 85 Нм

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:

Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Давайте ещё раз повторим определения, а затем .

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Двухтактные двигатель

Перед нами двухтактный двигатель. Здесь всё предельно просто.

Первый такт — Поршень двигателя движется вверх(картинка А), открывает отверстие(1) и сжимает смесь, которая уже находится в цилиндре. После чего, свеча зажигания воспламеняет горючее(картинка В).

Второй такт — После загорания опускающийся поршень(картинка С) сначала открывает выпускное отверстие(2), а затем переходное отверстие(3). После этого через него впускается новая порция воздушно-топливной смеси.

Таким образам поршень также заменяет клапаны двигателя, и в горючее добавляется масло для смазки поршня. Многие двухтактные двигатели снабжены ребрами для воздушного охлаждения цилиндра.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

Рекомендуем: Как затягивать болты ГБЦ

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Как протекает рабочий цикл четырехтактного карбюраторного двигателя?

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой.

Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр.

Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь.

В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется.

В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Первый такт — впуск.

Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения.

Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь.

В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.

Работа четырехтактного одноцилиндрового карбюраторного двигателя

а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в — расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 — поршневой палец; 13 — поршневые кольца

Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.

Третий такт — расширение.

В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление.

Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К.

В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура — 1100-1800 К.

Четвертый такт     выпуск.

Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.

Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.

Рабочий цикл двигателя заканчивается четвертым тактом — выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором – воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector