Блокировка дифференциала: что это, виды устройств и принцип работы

Содержание:

Назначение

Применение дифференциалов в трансмиссиях автомобилей обусловлено необходимостью обеспечить вращение ведущих колёс одной оси с разной частотой. В первую очередь это необходимо в поворотах, но также и при разном диаметре ведущих колёс, что возможно при вынужденной установке шин двух разных типоразмеров или при разности давления в шинах. В случае, если оба колеса имеют жёсткую кинематическую связь, любое рассогласование частот вращения по вышеупомянутым причинам приводит к возникновению так называемой паразитной циркуляции мощности. Это безусловно вредное явление вызывает проскальзывание колеса с меньшей силой сцепления относительно поверхности дороги, дестабилизирует движение автомобиля по дуге, нагружает трансмиссию и двигатель, повышает расход топлива и проявляется тем сильнее, чем меньше радиус поворота и выше силы сцепления, действующие на колёса. Дифференциал, установленный в разрез валов привода колёс одной оси, позволяет разорвать жёсткую кинематическую связь между колёсами и устранить паразитную циркуляцию мощности, не потеряв при этом возможностей по передаче мощности на каждое колесо с КПД близким к 100%. Подобный дифференциал называется «межколёсным», а данная область применения является основной для дифференциалов вообще, так как межколёсный дифференциал присутствует в приводе ведущих колёс всех легковых, грузовых и абсолютно подавляющей части внедорожныхспортивных и гоночных автомобилей.

Помимо привода ведущих колёс автомобиля дифференциалы также применяются:

  • В приводе двух и более постоянно ведущих осей от одного двигателя (так называемый «межосевой» дифференциал).
  • В приводе соосных воздушных и водных винтов противоположного вращения (в качестве дифференциала и редуктора одновременно).
  • В дифференциальных механизмах поворота гусеничных машин (в связке из одного-двух-трёх дифференциалов с разными принципами совместной работы).
  • При сложении передаваемой вращением мощности от двух двигателей с произвольными частотами вращения на один общий вал.

При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.

Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).

Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал, включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.

Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.

Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.

1) с электронной блокировкой;

2) с дисковым дифференциалом;

3) с вязкостной муфтой.

Управление системой осуществляется как механически водителем, так и с помощью специальных блоков управления, которые учитывают угловые скорости колес и разность крутящего момента на переднем и заднем приводе. Полностью автоматические системы позволяют экономить топливо, обеспечивают улучшение проходимости автомобиля, облегчая его управление на высокой скорости и лучше реализуют мощность мотора.

Сегодня подобные системы самоблокирующихся дифференциалов зарекомендовали себя с наилучшей стороны, они отличаются прочностью, надежностью и долговечностью, не требуя в процессе эксплуатации какого-либо сложного обслуживания и ремонта.

Первая необходимость

Теперь уже немного понятно, что такое дифференциал – это, своего рода, разновидность планетарной передачи. Но в чем заключается его необходимость? Данным агрегатом автомобили оснащаются не просто так, для этого есть весомый повод. И чтобы в этом разобраться, необходимо знать некоторую особенность.

При вхождении автомобиля в поворот, в особенности затяжной (движение по кольцу), его колеса проходят разный путь. Но поскольку в отсутствие дифференциала они связаны между собой жестко, то одно из колес будет неизбежно проскальзывать, не поспевая за другим. Стоит заметить, что внешнее колесо проходит более длинный путь, чем внутреннее. В связи с этим оно и вращаться должно быстрее, что позволит сохранить стабильность транспортного средства на дороге.

В чем может быть проблема? Вот здесь мы и подходим к сути и пониманию, что такое дифференциал. Это механизм, который позволяет избежать многих нюансов. Из-за того, что внутреннее колесо пробуксовывает, есть свои нежелательные последствия. Для автомобилей с задним приводом это может привести к заносу, а переднеприводное транспортное средство рискует потерять контроль управления при входе в поворот.

Устранить проблему можно, обеспечив разное вращение колесам. Собственно, для этого и было создано такое незамысловатое шестеренчатое устройство, как дифференциал.

Понятие и геометрический смысл дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть
приращения функции.

Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

или же

Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).

Почему дифференциал можно использовать в приближенных вычислениях?

Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть.
В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу
координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

Автоматическая блокировка

Когда речь идет об автоматической блокировке, которая основывается на дифференциале повышенного трения, это можно назвать неким компромиссом, так как реализуется он за счет сочетания работы полной блокировки и свободного дифференциала. Свободные дифференциалы бывают нескольких типов:

  • Когда блокировка происходит при разном крутящем моменте на колесах;
  • Когда блокировка происходит при отличии угловых скоростей полуосей.

Что касается первого типа, то он применяется на червячном дифференциале. Второй тип включает в себя механизмы с вязкостной муфтой, а также дисковый и электронно-блокирующийся дифференциал.

Дисковый дифференциал

Дисковый дифференциал – это симметричный механизм, которые включает в себя несколько групп фрикционных дисков. Одна группа соединяется с внешней частью дифференциала, а вторая связывается с полуосью. Работа этой системы обеспечивается за счет трения от разной скорости.

Дисковый дифференциал

Если автомобиль двигается прямо, то весь механизм работает как единое целое, с одинаковой частотой вращения. Когда какое-то колесо начинает двигаться быстрее, то фрикционные диски соответственно ускоряются и за счет силы трения крутящий момент на колесе с хорошим сцеплением увеличивается. Таким образом, дифференциал в некоторой мере блокируется и препятствие преодолевается.

Если в механизме используются пружины, то сжатие группы дисков будет постоянным, а если применяется гидравлический привод – она будет меняться в зависимости от ситуации.

Вязкостная муфта

Вязкостная муфта

Следующий тип – вязкостная муфта. Этот механизм состоит из группы перфорированных дисков, которые крепятся к самому дифференциалу и к валу привода. Они хранятся в специальном приспособлении, которое внутри имеет вязкое наполнение.

Когда вал привода и дифференциал имеет одинаковые обороты, то группа дисков вращается как один сплошной элемент. Когда же вал привода ускоряется, то какое-то количество перфорированных дисков также ускоряется, перемешивая жидкость и, таким образом, блокируя дифференциал. Вал, с другой стороны, получает больший крутящий момент. Когда скорость снова стабилизируется, то муфта автоматически выключается.

Вязкостная муфта используется либо в качестве блокировки межосевого дифференциала, либо как элемент автоматически подключаемого полного привода. Недостатком этого варианта считается склонность к перегреву, а также конфликтность с ABS. Поэтому в современных автомобилях такая система не применяется.

Электронный дифференциал является частью системы, которая препятствует пробуксовке. Когда колесо начинает прокручиваться, оно замедляется, а тяга передается на колесо с хорошим зацепом.

Червячный дифференциал

Когда имеет место разница между скоростью вращения на корпусе дифференциала и на приводном вале, может использоваться червячный дифференциал. Когда колесо начинает прокручиваться и терять крутящий момент, он переходит на колесо, которое имеет хороший зацеп за счет блокировки. Она частичная и ее уровень определяется на основе количества потерянного момента.

Среди механизмов такого типа наиболее популярными считаются Torsenи Quaife, которые являются редукторами из червячных шестеренок. Червячная шестерня может влиять на остальные шестерни, но при этом оставаться независимой от них. Такое явление называют расклиниванием, и служит оно для блокировки. Такого типа дифференциалы могут использоваться как для межосевых, так и для межколесных блокировок.

Червячный дифференциал

Как работает дифференциал

Рассмотрим, принцип функционирования дифференциального механизма на примере того, как реализуется его работа в разных условиях передвижения машины.

  • Прямое. Здесь колеса обязательно должны одинаково вращаться. Это значит, что узел не должен изменять их скорость. Поэтому сателлиты не производят оборотов вокруг своей оси – они просто передают вращение.
  • Поворот. При осуществлении поворота внутренне колесо испытывает большую нагрузку. Это воздействует на сателлиты, в результате чего они приходят в движение. Затем, используя коническую передачу, заставляют второе колесо передвигаться в большей скоростью и своевременно преодолеть большее, чем у внутреннего, расстояние. Таким образом, поворот выполняется согласованно и без буксования.

Подобный принцип работы имеет и недостатки, которые проявляются при пробуксовке. Во время нее одно из колес также испытывает нагрузку. Дифференциальный механизм из-за этого передает больше вращения на второе. Иногда это приводит к почти полной остановке первого колеса, имеющего хороший контакт с дорогой. Такое затруднение устраняют двумя различными способами:

  • ручной блокировкой;
  • установкой системы курсовой устойчивости.

Наглядно посмотреть на работу устройства можно, воспользовавшись трехмерной кинематической схемой, где все его составные части продемонстрированы в движении и взаимодействии между собой.

Три типа “Торсена”

В первом варианте в качестве червячных пар используются шестеренки ведущих полуосей, а также сателлиты. Для каждой полуоси имеются свои сателлиты, соединенные попарно с теми, что на противоположной оси. Соединение это осуществляется при помощи прямозубого зацепления. Оси сателлитов перпендикулярны полуосям. Данный вариант дифференциала “Торсен” признан самым мощным среди всех аналогичных конструкций. Он способен работать в очень широком диапазоне крутящего момента.

Второй вариант отличается тем, что оси сателлитов находятся параллельно к полуосям. Сателлиты в данном случае установлены иначе. Они находятся в специальных посадочных местах чашки. Парные сателлиты соединяются косозубым зацеплением, которое при расклинивании участвует в блокировке.

Третий вариант является единственным среди всей серии, где конструкция планетарная. Он применяется в качестве межосевого дифференциала в полноприводных машинах. Оси сателлитов и ведущие шестеренки здесь тоже параллельны друг другу. За счет этого узел очень компактный. Благодаря конструкции изначально можно распределять нагрузку между двух мостов в соотношении 40:60. Если срабатывает частичная блокировка, то пропорция может отклонятся на 20 %.

Типы устройств блокировки

Блокирующее устройство узла зависит от его типа и используемого механизма. Различные функции ограничены и определяют возможность их использования в межосевых или межколесных дифференциалах.

Кулачковое устройство блокировки

Принудительная блокировка происходит вручную через кулачковую муфту. Муфта полностью блокирует механизм и жестко соединяет его корпус с нагруженной полуосью. Кулачковый дифференциал приводится в действие приводами следующих типов:

  • механический;
  • гидравлический;
  • пневматический;
  • электрический.

Они включаются рычажным механизмом или специальной кнопкой на панели приборов (для электропривода).

Благодаря своей универсальности кулачковый дифференциал используется в межосевых и межколесных механизмах.

Самоблокирующейся дифференциал

Самоблокирующееся (автоматическое) дифференциальное устройство использует принцип увеличения сил трения при изменении условий нагрузки на полуоси ведущих колес. Отсюда и другое название — «дифференциал повышенного трения» или LSD (Limited Slip Differential).

Дифференциал повышенного трения имеет четыре основных варианта в зависимости от способа увеличения трения:

  • дисковый;
  • червячный;
  • вискомуфта;
  • электронная блокировка.

Дисковый

Дифференциал повышенного трения, в котором используется дисковая муфта, использует принцип автоматической блокировки при изменении угловых скоростей полуосей: чем больше их разница, тем выше степень перераспределения крутящего момента.

При использовании этого типа LSD между дисками возникает трение. Один фрикционный пакет имеет жесткое соединение с чашкой дифференциала, другие — с полуосями.

Фрикционные пакеты вращаются с одинаковой скоростью, когда ведущие колеса вращаются тоже, с одной и той же скоростью. При изменении угловой скорости диски ускоряющейся полуоси передают часть крутящего момента на вал другой полуоси (частичная блокировка) за счет увеличения силы трения с фрикционным пакетом корпуса (чашкой).

Степень сжатия в дисковом дифференциале может быть постоянной (за счет пружин) или переменной (гидравлически управляемой).

Червячный

Сателлиты и полуоси с червячной передачей в качестве привода часто используются для создания LSD, блокируемого в результате разности крутящих моментов.

Эта система LSD с червячным приводом известна как Torque Sensing или сокращенно — Torsen. Принцип работы червячной передачи чрезвычайно прост: увеличение крутящего момента на одной полуоси приводит к частичной блокировке и его передаче на другую полуось. В этом случае не требуются никакие дополнительные системы или агрегатов, червячный узел изначально является самоблокирующимся из-за свойств привода, в котором другие шестерни не могут приводить в движение червячную передачу. Червячный привод применяется в колесных и межосевых дифференциалах различных типов машин.

Вискомуфта

Вязкостная муфта состоит из набора близко расположенных перфорированных дисков, которые размещены в герметичном корпусе с силиконовой жидкостью и соединены с чашкой и приводным валом.

При одинаковых угловых скоростях устройство работает в штатном режиме. Его блокировка происходит при увеличении скорости вала: диски на нем увеличивают скорость и, перемешивая силикон и заставляют его затвердеть. Диски чашки получают и передают крутящий момент на другой вал, увеличивая его тяговое усилие.

LSD, блокирующую функцию которого выполняет вязкостная муфта, имеет большие габаритные размеры и применяется в межосевых дифференциалах. Вязкостная муфта также может использоваться как дифференциал полноприводного автомобиля и полностью выполняет его функции.

Однако у нее есть один серьезный недостаток: возможен перегрев и периодическая несовместимость с системой ABS. Это привело к тому, что вискомуфты используются в современных автомобилях крайне редко.

Электронная блокировка

Дифференциал повышенного трения, в котором используется электронная система блокировки, реагирует на изменение угловой скорости ведущих колес.

Дифференциал управляется программно. По мере увеличения скорости колеса в тормозной системе повышается давление, и его скорость уменьшается. Это увеличивает тяговое усилие и передает крутящий момент на другое колесо.

Таким образом, дифференциал не оборудован дополнительными элементами и не блокируется, то есть по сути это не LSD. Перераспределение крутящего момента и выравнивание угловых скоростей происходит под действием тормозной системы, управляемой антипробуксовочной системой.

Назначение механизма

Чтобы понять роль дифференциала, применяющегося в транспортных средствах всех типов, нужно рассмотреть конструкцию обычного планетарного редуктора, передающего усилие от карданного вала двум полуосям. Алгоритм работы агрегата прост:

  1. Кардан вращает хвостовик с косозубой шестеренкой на конце.
  2. От хвостовика крутится большая планетарная шестерня, соединенная с двумя полуосями.
  3. Крутящий момент передается от планетарной шестерни полуосям и закрепленным на концах колесам.

Без дифференциала редуктор поровну распределяет крутящий момент на 2 оси, в результате колеса вертятся с одинаковой скоростью. Такое разделение вполне годится для прямолинейного движения, которое в реальности встречается довольно редко – даже при езде по ровным участкам трассы автомобиль отклоняется от прямой линии.

Чтобы машина идеально прошла поворот, колеса одного моста должны вращаться с разными скоростями, поскольку внешнее катится по более широкой дуге. Простой редуктор, обеспечивающий одинаковое вращение обеих полуосей, на повороте заставит одну шину скользить, вторую – буксовать, что заметно ухудшает маневренность авто.

Совмещенный с планетарным редуктором дифференциал нужен для изменения угловых скоростей правого и левого колеса в зависимости от крутизны поворота. Механизм автоматически распределяет крутящий момент на полуоси, позволяя колесным покрышкам совершать разное число оборотов при движении автомобиля по дуге. Без дифференциала нормальная эксплуатация транспортного средства невозможна по таким причинам:

  • недостаточная управляемость;
  • быстрое истирание шин;
  • ускоренный износ деталей редуктора, валов и полуосей.

Автомобильный дифференциал: устройство, неисправности и методика выбора

Дифференциал по праву называют одним из важнейших элементов автомобильной трансмиссии. Именно он может обеспечить вращение колес с различными угловыми скоростями. Энергия для вращения, как несложно догадаться, берется от двигателя. Ранее в разделе «Полезные советы» Avto.

pro уже публиковал материал, посвященный редуктору заднего моста. Так вот, в этом материале дифференциал упоминался лишь вскользь, однако было сказано, что данное устройство является весьма сложным и требует комплексного разбора в рамках отдельной статьи. Что ж, вы читаете именно эту статью.

Предлагаем ознакомиться с устройством дифференциала, принципом его работы, а также основными неисправностями.

Назначение дифференциала

Автомобильный дифференциал признав распределять крутящий момент, полученный от карданного вала, между колеса передний или же задней оси. Последнее зависит от типа привода. При этом обеспечивается вращение колес без пробуксовки – это очень важный момент, хотя его мы еще затронем. Может показаться, что с этой задачей отлично справится и обычный редуктор.

На деле же оказывается, что редуктор оказывается абсолютно неэффективным в тех случаях, когда на каждое из ведущих колес оказывают неодинаковую нагрузку. Например, одно колеса наезжает на препятствие, тем временем как второе движется по ровной поверхности. Из этого следует вывод, что трансмиссия нуждается в специальном узле, который перераспределяет крутящий момент исходя из условий на дороге.

Им и является дифференциал.

https://www.youtube.com/watch?v=qbcwdSSq5h4

Как и в случае редукторов, дифференциалы могут располагаться в разных местах. В зависимости от привода транспортного средства выделяют следующие схемы расположения дифференциала:

  • Передний привод – дифференциал монтируется в картере КП;
  • Задний привод – механизм является частью ведущего моста (часто этот элемент называют просто редуктором);
  • Полный привод – выделяют два варианта: расположение в корпусе одного из мостов или в раздатке.

При отсутствии дифференциала или полном выходе его из строя автомобиль резко теряет в маневренности. Автотранспорт начала прошлого века особенно страдал от этого – первые модели грузовиков и серийных легковые автомобили с трудом преодолевали препятствия или входили в неконтролируемый занос. Первые дифференциалы начали устанавливать на автомобили концерна Volkswagen. Они выгодно отличались от американских, английских, французских и итальянских автомобилей тем, что в их трансмиссии крутящий момент распределялся между колесами относительно равномерно.

Подробнее об устройстве

Конструктивной основой дифференциала является планетарный редуктор. Напоминаем, что редуктор по своей сути является парой сцепленных шестерен – малого и большого диаметра с разным количеством зубьев. Когда быстро вращающаяся малая шестерня сцеплена с большей, последняя вращается с ощутимо меньшей скоростью. Например, если в первой шестерне 50 зубьев, а во второй целых 100, то вторая шестерня вращается вдвое медленнее первой. При вращении большая шестерня совершает один оборот тогда, когда первая совершает два оборота.

Что такое преднатяг дифференциала

Дифференциал автомобиля занимается распределением крутящего момента с ведущего вала на правое и левое полуоси. Состоит дифференциал из 4-х конических шестеренок. По габаритам не большой. Если колеса крутятся с одинаковой нагрузкой, то дифференциал распределяет силу вращения пополам (50:50).

Если одно колесо наехало, например, на лед, то дифференциал на одно колесо дает большую вращательную силу, а на другую — меньшую. То колесо, которое на льду, получает повышенную угловую скорость и станет ведущим, а то колесо, которое крутится по асфальту — перестанет получать вращательную скорость и станет ведомым. Из-за этого, то, что момент вращения передается только на одно колесо, причем на то, которое находится (в данном случае) на льду, управление и проходимость автомобилем сильно ухудшается. Но, для сохранения управляемости и проходимости, ведущим колесо должно было стать то колесо, которое на асфальте. Чтобы избежать такого ненужного эффекта, было изобретено устройство — автоматический дифференциал повышенного трения.

Самоблокирующиеся дифференциалы

Механизм повышенного трения — это многодисковый дифференциал, вискомуфта, самоблокирующийся дифференциал «Квайф» и «Торсен» осуществляет частичную блокировку автоматически, без переключения рукоятки водителем.

Отличие автоматического дифференциала от симметричного в том, что автоматический самоблокирующийся имеет пружинный пакет фрикционных дисков.

Состоит автодифференциал из:

  • ведомые червячные (полуосевые) шестерни;
  • ведущие червячные (саттелиты) шестерни.

Оси сателлиты и полуосей параллельны друг другу. Если одно колесо, допустим правое, начинает вращаться медленнее, чем колесо напротив, то, соответственно, и полуось с шестерней вращается медленнее и вращает с такой же угловой скоростью сателлит 2. Сателлит 2 передает вращение сателлиту 3. Сателлит 3 передает вращение шестеренке полуоси 4. В результате — разные угловые скорости колес на повороте.

Из-за того, что крутящие моменты в винтовом зацеплении разные, появляются осевые и радиальные силы, которые прижимают шестерни 1 и 4, сателлиты 2 и 3 торцами к крышке дифференциала. Червячные сателлиты 2 и 3 прижимаются к поверхностям отверстий, в которых они сидят. Благодаря образующимся при этом силам, происходит блокировка полуосей. Насколько сильно заблокируется полуось, определяется коэффициентом блокировки.

Характеристики дифференциала самоблока:

  • коэффициент блокировки дифференциала в % (КБД) (зависит от наклона зубьев, если винтообразный, или, если это диск, то углом чашки);
  • преднатяг блокировки в кг (это статическое сопротивление между 2 полуосями).

КБД — это отношение моментов сил отстающего к забегающему, то есть крутящий момент отстающего колеса делим на крутящий момент колеса, которое быстрее вращается.

Преимущества самоблокирующегося дифференциала:

  1. Водителю не требуется самому включать самоблок дифференциала, все происходит автоматически.
  2. Устраняет пробуксовку при разных значения сцепления колес.
  3. Улучшает проходимость и динамику управления автомобилей на разных дорогах.
  4. Эффективность разгона возрастает на разных дорожных покрытиях.
  5. Детали самоблокирующегося и обычного дифференциалов взаимозаменяемы.
  6. Какая-либо полуось не сломается, потому что нет полной блокировки колес.
  7. Отключение, то есть разблокировка осуществляется путем сброса педали газа.

Самоблокирующиеся винтовые дифференциалы эффективно подходят для обычного автомобиля. Такие устройства надежные. Рабочий эксплуатационный ресурс винтовых самоблоков такой же, как и у коробок переключения передач (КПП). Они плавно активируются и дезактивируются.

Главная передача

Назначение главной передачи

Основное назначение главной передачи в трансмиссии — передача тяги двигателя к, так сказать, «конечному потребителю» – колесам. Если автомобиль заднеприводный, то тяга от коробки передач через карданный вал передается на главную передачу, а та, в свою очередь, перенаправляет поток мощности на колеса через полуоси (если задняя подвеска зависимая и имеет мост) или приводные валы с шарнирами равных угловых скоростей (об этом пойдет речь дальше). Если автомобиль переднеприводный, то главная передача через шестерню связана непосредственно с коробкой передач.

Есть такое понятие, как неразрезной мост. Означает оно то, что главная передача вместе с дифференциалом находятся в корпусе, к которому подсоединены или отлиты вместе с ним изначально два кожуха полуосей. Полуоси — это валы, соединяющие дифференциал и главную передачу с колесами. Данная конструкция является частью зависимой подвески автомобиля, так как жестко связывает правое и левое ведущие колеса. Полуось жестко связывает колесо и главную передачу, то есть при преодолении какоголибо препятствия весь мост перемещается вместе с колесами и всем содержимым. Убираем кожух полуосей, корпус главной передачи устанавливаем на кузов или подрамник, колеса с главной передачей соединяем с помощью приводных валов через шарниры равных угловых скоростей и получаем разрезной мост и независимую подвеску колес. Все это подробнее описано ниже в разделе «Устройство главной передачи» и представлено на рисунке 5.32.

Примечание
Главная передача служит для понижения числа оборотов, передаваемых от двигателя к колесам, и увеличения тягового усилия. Она обеспечивает передачу вращения с карданного вала на полуоси под углом 90° при классической компоновке автомобиля (о которой подробно рассказывается в главе 3). В главной передаче применяют шестеренчатые передачи, одинарные или двойные.

Устройство главной передачи

Главная передача состоит из двух шестерен, а точнее, из конической шестерни (на рисунке 5.33 — ведущая шестерня) и конического колеса (на рисунке 5.33 — ведомое колесо).

Рисунок 5.33 Главная передача заднего неразрезного моста.

Шестерня является ведущим элементом (к ней подводится тяга от коробки передач и двигателя), а колесо —ведомым (принимает тягу от шестерни и перенаправляет под углом 90 градусов).

Шестерни изготавливают со спиральными зубьями, благодаря чему повышается прочность зубьев, увеличивается число зубьев, одновременно находящихся в зацеплении, и шестерни работают более плавно и бесшумно.

Кроме конической простой шестеренчатой передачи, у которой оси взаимно пересекаются, в легковых автомобилях применяют гипоидную передачу (показана на рисунке 5.34). В этой передаче зубья имеют специальный профиль и ось малой конической шестерни смещена вниз относительно центра большой шестерни на некоторое расстояние «S». Это дает возможность расположить карданный вал ниже и уменьшить высоту выпуклой верхней части туннеля для размещения вала в полу кузова, вследствие чего достигается более удобное размещение пассажиров в кузове. Кроме того, имеется возможность несколько снизить центр тяжести автомобиля и повысить его устойчивость при движении. Гипоидная передача обладает большей плавностью работы, более высокой прочностью зубьев и износоустойчивостью.

Примечание
Однако у гипоидной передачи есть одна неприятная особенность: порог заклинивания при обратном ходе. Расчеты данной передачи, конечно, исключают такую возможность, но всегда стоит помнить, что данную главную передачу может заклинить при превышении расчетных оборотов (при вращении в обратную сторону). Так что будьте осторожны с выбором скорости движения задним ходом.

Для гипоидной передачи необходимо применение смазки специальных сортов из-за большого давления между зубьями при работе и больших скоростей относительного скольжения между зубьями. Кроме того, требуется более высокая точность монтажа передачи.

Рисунок 5.34 Элементы главной передачи. Гипоидная передача.

Понятие дифференциала функции одной переменной и его геометрический смысл

Понятие и геометрический смысл дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так: или или же

Почему дифференциал можно использовать в приближенных вычислениях?

Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

О разных формах записи дифференциала Дифференциал функции в точке x и обозначают или Следовательно, (1) или (2)

поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной. Замечание. Нужно помнить, что если x – исходное значение аргумента, а — наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.Дифференциал функции можно записать в другой форме: (3)

или (4)

30. Свойства дифференциала.

  • Свойства дифференциала
  • Дифференциал обладает свойствами, аналогичными свойствам производной:
  • (С – постоянная величина) (5)
  • (6) (7)
  • (8) (9)
  • Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .
  • Применение дифференциала в приближенных вычислениях
  • Установленное во втором параграфе приближенное равенство
  • или (10)
  • позволяет использовать дифференциал для приближенных вычислений значений функции.
  • Запишем приближенное равенство более подробно. Так как
  • а то или
  • (11)
  • Абсолютная и относительная погрешности приближенных вычислений

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением: (12)

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

(13) Если точное число неизвестно, то (14)

Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.

31. Применение дифференциала к приближенным вычислениям.

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство ∆у≈dy, (3)

причем это равенство тем точнее, чем меньше ∆х.

Понятие и геометрический смысл дифференциала

Пусть y = f (x) имеет производную

не равную нулю.

Применяя свойства предела функции, получают равенство

После умножения обеих частей на приращение аргумента Δx, образуется тождество:

в котором в правой части записано слагаемое, являющееся бесконечно малой одного порядка с Δx, далее идет слагаемое более высокого порядка.

Определение 1

Дифференциалом функции y = f (x) первого порядка называется главная часть её приращения f′(x)Δx, которую обозначают dy (или d(f(x)).

Для наглядного представления и понимания определения рассматривается касательная к графику функции y = f(x) в точке x. Когда значение переменной сдвигается по построенной прямой (получает приращение) на некоторую малую величину Δx, значение второй координаты точки тоже меняется.

Значит, дифференциал функции y = f(x) в точке x равен приращению ординаты касательной, когда её абсцисса меняется на величину Δx.

Определение 2

Дифференциал от дифференциала называется дифференциалом второго порядка. Таким же рекуррентным образом вводятся понятия дифференциалов более высоких порядков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector